TEMPO DE ARMAZENAMENTO E PROCESSO DE BENEFICIAMENTO NO DESEMPENHO INDUSTRIAL DO ARROZ IRRIGADO

Moacir Cardoso Elias; Rafael Gomes Dionello; Lauri Lourenço Radünz; Rogério Soares da Silveira; Flávio Manetti Pereira, Élvio Aosani. Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia "Eliseu Maciel", Universidade Federal de Pelotas. Campus Universitário, CEP 96001-010, Capão do Leão-RS, Fone 0xx53-2757258, Fax 0xx53-2759031. E-mail: eliasmc@ufpel.tche.br.

Por ter cada vez maior importância no contexto econômico, com participação crescente no complexo agroindustrial brasileiro, a parboilização tem que merecer estudos cada vez mais aprofundados. Desde a década de 50, quando foi instalada a primeira indústria no Rio Grande do Sul, a produção de arroz parboilizado no Estado aumenta anualmente, chegando, no início da década de 90 a produzir cerca de 300 mil toneladas anuais, quase 10% da produção de arroz do Estado (Amato & Silveira Fº, 1991).

Na última década do Século XX, o arroz parboilizado praticamente duplicou sua participação percentual no Rio Grande do Sul e passou a corresponder à quase totalidade em Santa Catarina. Nos últimos 20 anos, passou de 4 a 5 para quase 20% do total industrializado no Brasil. Fundamentalmente, o processo consiste em se submeter o arroz a tratamentos hidrotérmicos como encharcamento em água aquecida, autoclavagem e secagens, antes do descascamento e das operações subseqüentes, que são as mesmas do beneficiamento convencional e utilizam os mesmos equipamentos da industrialização desse, com as devidas adequações (Bhattacharia & Ali, 1985; Rombaldi & Elias, 1989; Amato & Silveira Fº, 1991).

As operações hidrotérmicas são muito importantes pela influência que têm sobre os rendimentos, a classificação e as características sanitárias, nutricionais, sensoriais e culinárias do arroz. As sucessivas alterações no armazenamento tendem a reduzir a qualidade do arroz destinado à industrialização (Elias, Gutkoski & Rombaldi, 1993 ;Silva, 1994; Elias, 2000). A par de dificuldades, como tradições e hábitos alimentares, deficiências existentes no processo são responsáveis pela ainda baixa aceitação, devendo ser buscadas melhorias no desempenho, tanto do processo como do produto, para atender a um mercado promissor.

Objetivou-se, com o trabalho, se avaliar os efeitos do tempo de armazenamento e do processo de beneficiamento no desempenho industrial do arroz irrigado, beneficiados pelos dois processos mais utilizados pela agroindústria arrozeira nacional: o beneficiamento convencional de produção de arroz branco polido e a parboilização.

O projeto foi desenvolvido no Laboratório de Pós-Colheita e Industrialização de Grãos, do Departamento de Ciência e tecnologia Agroindustrial, da Faculdade de Agronomia "Eliseu Maciel", da Universidade Federal de Pelotas. No experimento, foram utilizados grãos do cultivar BR-IRGA 410, colhidos com 20% de umidade, pré-limpos e submetidos à secagem forçada, em sistema intermitente adaptado, com temperatura de massa não superior a 40°C, após o que foram armazenados no sistema convencional, em sacaria, em condições ambientais, com controle técnico operacional para que a temperatura não ultrapassasse 20°C.

Para o beneficiamento industrial, foram utilizados processos em escala e instalações piloto, desenvolvidos pelo Laboratório de Pós-Colheita e Industrialização de Grãos (Elias, 1998). Os grãos foram submetidos ao beneficiamento pelo processo convencional de arroz branco polido e por parboilização, com análises de parâmetros físico-químicos, rendas, rendimentos e defeitos de classificação comercial, gerais e graves, conforme preceitua a metodologia oficial (Brasil, 1988).

As Tabelas 1 e 2 apresentam, respectivamente, as características psicrométricas do ar no interior do armazém e os parâmetros físico-químicos, de rendimento industrial e de incidência de defeitos, em grãos de arroz, cultivar BR-IRGA 410, armazenados com casca, no sistema convencional em sacaria, durante seis meses, e beneficiados pelo processo convencional para arroz branco polido e por parboilização

Tabela 1 - Características psicrométricas do ar no interior do armazém convencional, durante os cinco meses de armazenamento, em sacaria, dos grãos de arroz com casca¹.

	meses de armazenamento					
Características psicrométricas do ar	0	3	6			
Temperatura (^o C)	14,0 c	17,0 b	19,5 a			
Umidade Relativa (%) ²	89,0 a	73,0 b	75,0 b			

¹ Médias aritméticas simples de sete repetições, na mesma linha, acompanhada de letras, distintas indicam diferenças significativas pelo teste de Duncan a 1% de probabilidade.

² Determinadas pelo emprego do Diagrama de Mollier.

Tabela 2 - Parâmetros físico-químicos, rendimento industrial e incidência de defeitos, em percentagem, nos grãos de arroz, cultivar BR-IRGA 410, armazenados pelo sistema convencional em sacaria e beneficiados pelo processo convencional para arroz branco polido e por parboilização.

parâmetro	meses de armazenamento / sistema de beneficiamento						
	0		3		6		
	convenc.	parboil.	convenc.	parboil.	convenc.	parboil.	
Umidade	a 13,47 A	13,57 A a	a 13,64 A	13,65 A a	a 13,70 A	13,76 A a	
Extrato etéreo no farelo	a 16,70 B	17,85 A a	b 15,31 B	15,66 A b	b 13,47 B	14,90 A c	
Acidez do extrato etéreo	c 3,21 B	3,84 A c	b 5,85 B	6,99 A b	a 7,40 B	9,36 A a	
Cascas	a 21,91 A	21,32 B a	a 21,78 A	21,10 B a	a 21,75 A	21,14 B a	
Farelo	a 10,17 A	7,92 B a	a 9,93 A	7,85 B a	a 10,79 A	8,03 B a	
Renda de descascamento	a 78,08 B	78,68 A a	a 78,22 B	78,90 A a	a 78,25 B	78,86 A a	
Renda de grãos polidos	a 67,91 B	70,76 A a	a 68,29 B	70,65 A a	a 67,46 B	70,83 A a	
Rendimento de inteiros	a 47,23 B	67,14 A a	b 48,45 B	68,07 A a	b 48,63 B	67,96 A a	
Grãos quebrados	a 20,68 A	3,62 B a	b 19,84 A	2,58 B a	b 19,33 A	2,87 B a	
Mat. estranhas e/ou impurezas	a 0,36 A	0,28 A a	a 0,35 A	0,31 A a	a 0,39 A	0,33 A a	
Grãos ardidos, mofados	c 0,11		b 0,48		a 0,65		
Grãos ardidos e pretos		1,67 c		3,00 b		4,57 a	
Defeitos graves	c 0,47 B	1,95 A c	b 0,83 B	3,31 A b	a 1,04 B	4,90 A a	
Grãos gessados	a 1,33		a 1,48		a 1,42		
Grãos amarelos	c 0,76		b 1,41		a 2,23		
Grãos danif., manch. e/ou picados	c 3,63 B	6,41 A c	b 4,37 B	7,83 A b	a 5,19 B	9,46 A a	
Grãos rajados	a 0,07 A	0,05 A a	a 0,05 A	0,08 A a	a 0,07 A	0,05 A a	
Defeitos gerais agregados	c 5,79 B	6,46 A c	b 7,31 B	7,91 A b	a 8,91 B	9,51 A a	
Total de defeitos	c 6,26 B	8,41 A c	b 8,14 B	11,22 A b	a 9,95 B	14,41 A a	

⁻ Médias de três repetições, expressas em relação a 100 gramas de arroz com casca, acompanhadas de letras distintas, na mesma linha, indicam diferenças a 5% de probabilidade, pelo teste de Duncan. Letras maiúsculas, à direita, comparam o desempenho dos dois processos de industrialização no mesmo tempo de armazenamento; minúsculas à esquerda comparam o desempenho do processo convencional de industrialização nos diferentes tempos de armazenamento e minúsculas à direita comparam o desempenho da parboilização nos diferentes tempos de armazenamento.

Analisando-se conjuntamente as *Tabelas* 1 e 2, é possível se verificar a dependência das condições ambientais, do tempo de armazenamento e do sistema de beneficiamento industrial nos parâmetros físico-químicos de conservabilidade, nos rendimentos e na incidência de defeitos. As condições ambientais de armazenamento apresentaram médias elevadas de umidade relativa e temperaturas médias (*Tabela* 1) abaixo de 20°C. Durante os seis meses não foi constatado desenvolvimento de insetos.

No processo convencional de beneficiamento de arroz branco polido(*Tabela* 2), foram verificados aumentos nos percentuais de grãos manchados, picados, ardidos e

pretos, com o aumento do tempo de armazenamento, assim como redução dos amarelos. Os percentuais de grãos gessados e de rajados não se alteram significativamente com o tempo de armazenamento, pelo menos durante seis meses. O percentual de grãos inteiros aumenta a partir do primeiro mês de armazenamento, ocorrendo estabilização após o terceiro, em conseqüência do equilíbrio da temperatura, da umidade e das tensões resultantes da secagem forçada a que os grãos foram submetidos. Isso indica que o beneficiamento industrial por esse processo deve ser evitado logo após o armazenamento.

Na parboilização, tal comportamento não se manifestou, indicando não serem necessárias as mesmas restrições, o que se explica pela drasticidade das operações hidrotérmicas características desse processo. A parboilização, comparada com o processo convencional de beneficiamento de arroz branco polido, reduz os teores de grãos quebrados, gessados e amarelos, não altera os de rajados nem os de danificados, mas intensifica a incidência dos manchados, picados, ardidos e pretos.

Os resultados indicam que: a) o tempo de armazenamento intensifica a ocorrência de grãos amarelos, manchados, picados, ardidos e pretos, não alterando os teores de gessados e nem nos rajados; b) a parboilização aumenta as rendas de descascamento e de polimento, reduz os teores de grãos quebrados, gessados e amarelos, não altera os de rajados nem os de danificados, mas intensifica a incidência de manchados, picados, ardidos e pretos.

O projeto foi financiado pelos convênios da UFPEL com a CAPES, o CNPq, a EMBRAPA e a Secretaria Estadual de Ciência e Tecnologia do Rio Grande do Sul, através do Programa Pólo de Modernização Tecnológica em Alimentos da Região Sul.

REFERÊNCIAS BIBLIOGRÁFICAS

- AMATO, G.W.; & SILVEIRA Fº, S. Parboilização de arroz no Brasil. Porto Alegre, **CIENTEC**, 1991. 91 p.
- BHATTACHARIA, K.R. & ALI, S.Z. Changes in rice during parboiling, and properties of parboiled rice. In: POMERANZ, Y. Advances in Cereal Science and Technology. **Saint Paul**, Minnesota, A.A.C.C., 1985. v.7, p.105-67.
- BRASIL. Ministério da Agricultura, do Abastecimento e da Reforma Agrária. Comissão Técnica de Normas e Padrões. **Normas de identidade, qualidade, embalagem e apresentação do arroz**. Brasília, v. 8, n. 20/6, 1988. 25 p.
- ELIAS, M. C. Efeitos da espera para secagem e do tempo de armazenamento na qualidade das sementes e grãos do arroz irrigado. Pelotas, 1998. 164p. Tese (Doutorado em Ciência e Tecnologia de Sementes) Faculdade de Agronomia "Eliseu Maciel", UFPel, 1998.
- ELIAS, M.C. Secagem e armazenamento de grãos, em médias e pequenas escalas. 1.ed. Pelotas: Editora e Gráfica Universitária, 2000.147p.
- ELIAS, M.C.; GUTKOSKI, L.C. & ROMBALDI, C.V. Combinação de tempo e temperatura de maceração e de tempo de autoclavagem a 116ºC na parboilização do BR-IRGA-410. Lavoura Arrozeira. Porto Alegre, IRGA. 46(406):03-07. 1993.
- ROMBALDI, C.V & ELIAS, M.C. Secagem intermitente e industrialização de arroz, variedade BR-IRGA 409. **Lavoura Arrozeira**. Porto Alegre, IRGA, 42(388): 22-33, 1989.
- SILVA, J.A. Comportamento hidrotérmico na parboilização e desempenho industrial de três variedades de arroz. Pelotas. **UFPEL**. 153 p. 1994 (Dissertação de Mestrado).