SCS118 MARQUES: NOVA CULTIVAR DE ARROZ IRRIGADO PARA SANTA CATARINA

Moacir Antonio Schiocchet¹, <u>Alexander de Andrade¹</u>, Augusto Tulman-Neto³, Domingos Savio Eberhardt¹, Eduardo Hickel¹, Ester Wickert¹, Gabriela Neves Martins¹, Klaus Konrad Scheuermann¹, Irceu Agostini¹, José Alberto Noldin¹, Juliana Vieira Raimondi², Ronaldir Knoblauch¹, Rubens Marchalek¹

Palavras-chave: Mutação induzida, produtividade, qualidade de grãos

INTRODUCÃO

A mutação é um dos principais mecanismos de evolução das espécies, podendo ocorrer espontaneamente na natureza ou ser induzida por agentes mutagênicos. A mutação induzida é utilizada com grande sucesso por diferentes programas de melhoramento no desenvolvimento de novas cultivares. A aplicação da indução de mutação em arroz já gerou centenas de cultivares especialmente nos países da Ásia. O método mais usado para promover a mutação em arroz é o tratamento de sementes com radiações ionizantes, como os raios gama (Tulmann-Neto et al., 2011).

O programa de melhoramento genético em arroz irrigado da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri) com a colaboração do Centro de Energia Nuclear na Agricultura (Cena/USP), desde 1985 desenvolvem ações de pesquisas com a mutação induzida para a obtenção de novas cultivares de arroz (Ishiy et al., 2006). O objetivo deste trabalho é apresentar a origem e as características da nova cultivar de arroz irrigado SCS118 Marques obtida por mutação induzida.

MATERIAL E MÉTODOS

A cultivar SCS118 Marques foi selecionada na Estação Experimental de Itajaí (EEI), SC. Brasil. A EEI esta localizada a 26°54' S e 48°49' W, em área de abrangência de clima do tipo Cfa –subtropical úmido e altitude média de 5 m. No ano de 2000, foram irradiadas com 250 Gv de raios gama no Cena, 300 g de sementes genética da cultivar SCSBRS Tio Taka. Após a irradiação as sementes foram semeadas em caixas com solo arenoso na EEI, visando à formação de mudas. No estádio de duas a três folhas, as mudas foram transplantadas individualmente a campo formando a população M₁ com aproximadamente 8.000 plantas. Estas plantas emitiram vários perfilhos, formando agrupamentos de 10 a 15 colmos. Na maturação. foram colhidas três panículas de cada planta original e, de cada panícula, cinco grãos (Ishiy et al. 2006). Os grãos colhidos formaram a população M2, composta por aproximadamente 10 mil plantas. Nesta população foram selecionadas as plantas com características agronômicas de interesse. As gerações M3 a M5 foram implantadas em parcelas formadas por aproximadamente 220 plantas, as quais foram anualmente avaliadas e as progênies selecionadas, até se obterem linhas homogêneas (M6). Durante a condução destas gerações, as populações foram submetidas à condições favoráveis à ocorrência de brusone, a fim de possibilitar a seleção de genótipos com tolerância a doença. Em experimentos paralelos, avaliou-se também a tolerância das plantas à toxidez por ferro. A partir das linhagens em M6 foi avaliado, no sistema de cultivo pré-germinado, o potencial produtivo, a resistência ao acamamento e a qualidade de grãos. As avaliações e seleções das gerações M1 a M6 foram realizadas na EEI. As linhagens selecionadas em M₇ foram avaliadas no sistema de cultivo prégerminado em ensaios regionais por três anos consecutivos, em cinco regiões orizícolas de Santa Catarina. Entre as linhagens avaliadas no ano agrícola de 2005/2006, foi selecionada uma com características promissoras, registrada como "SC 471". Esta linhagem foi submetida às avaliações em parcelas de 60 m², tendo como testemunhas duas cultivares, uma delas a

^{1.} Eng. Agr. Dr., Epagri, Estação Experimental de Itajaí, C.P. 277, 88318-112 Itajaí, SC, E-mail: mschio@epagri.sc.gov.br.

^{2.} Biol. M.Sc., Doutoranda em Recursos Genéticos Vegetais, UFSC.

^{3.} Eng. Agr. Dr., Centro de Energia Nuclear na Agricultura (CENA).

mais plantada na região. Nesta etapa, avaliou-se a uniformidade, desempenho produtivo, rendimento industrial, qualidade culinária, resistência ao acamamento e à brusone. Por apresentar produtividade superior às testemunhas, alta estabilidade e qualidade de grãos, a linhagem "SC 471" foi designada a ser lançada como cultivar apropriada ao sistema de cultivo pré-germinado para o Estado de Santa Catarina, com o nome de SCS118 Marques. Esta denominação é uma homenagem póstuma ao Eng.- Agr., M.Sc., Luiz Fernandes Marques, pesquisador da Epagri que por mais de 30 anos atuou na Epagri na área de tecnologia e produção de sementes de arroz irrigado na Estação Experimental de Itajaí.

RESULTADOS E DISCUSSÃO

A cultivar de arroz irrigado, SCS118 Marques é do tipo moderno de planta, com ciclo tardio (144 dias até a maturação), com folhas eretas e pilosas, alta capacidade de perfilhamento e porte baixo (80 cm, da base até o primeiro nó da panícula). Apresenta degrane intermediário, resistência ao acamamento e tolerância moderada à toxidez por ferro e a brusone (Tabela 1).

Tabela 1. Características agronômicas da cultivar SCS118 Marques

rabbia 1: Carabiblicae agrenomic	naiqu
Produtividade média (kg/ha) ^(A)	9000
Estatura (cm)	80
Vigor inicial	Bom
Perfilhamento	Excelente
Ciclo biológico	Tardio
Emergência a maturação (dias)	144
Resistência a toxidez por ferro	Médio resistente
Resistência a brusone (B)	Médio resistente
Degrane	Intermediário
Folha bandeira	Ereta
Exerção da panícula	Completa
Pilosidade da folha	Presente
Acamamento	Resistente
(A)	

(A) Média dos experimentos regionais

Os grãos são da classe longo-fino com um comprimento médio de 7,09 mm, espessura de 1,77 mm, relação comprimento/largura de 3,15 e não possuem arista ou microarista. O rendimento de engenho para arroz branco é de 70,02% com 59,5% de grãos inteiros (Tabela 2). As avaliações regionais de produtividade da cultivar SCS118 Marques, realizadas durante cinco safras nos municípios de Itajaí, Massaranduba, Pouso Redondo, Tubarão e Turvo, demonstraram que a cultivar possui alta estabilidade produtiva (Tabela 3). A avaliação sensorial resultou em boa aceitação pelos consumidores, tanto de arroz branco como de parboilizado. O teor de amilose é alto (28%) e a temperatura de gelatinização intermediária confirmou a excelente qualidade de cocção e de mesa. As avaliações de desempenho industrial demonstraram que os grãos são adequados aos processos de parboilização ou beneficiamento direto.

⁽B) Em condições experimentais de alta pressão de inóculo

Tabela 2. Características do grão da cultivar SCS118 Marques

Classe	Longo-fino
Arista	Ausente
Microarista	Ausente
Peso de 1.000 grãos com casca (g)	30,5
Pilosidade	Presente
Cor das glumas	Palha
Comprimento do grão polido (mm)	7,09
Largura do grão polido (mm)	2,25
Espessura do grão polido (mm)	1,77
Relação comprimento/largura	3,15
Teor de amilose (%) ^(C)	28 (alto)
Temperatura de gelatinização (C)	Intermediária
Centro branco (0 a 5) ^(D)	2
Renda (%)	70,2
Grãos inteiros (%)	59,7
Grãos quebrados (%)	10,7
Aroma	Normal
Processo de parboilização	Adequado
Aparência do grão polido	Vítrea
Aparência do grão parboilizado	Vítrea
T() - (

(C) Análise realizada pela Embrapa Arroz e Feijão (CNPAF)

(D) Centro branco: 0 completamente vítreo e 5: totalmente gessado

Tabela 3. Médias de produtividade de grãos (T ha⁻¹) das cultivares SCS118 Marques, SCS117CL e Epagri 108 nos experimentos regionais de Itajaí, Massaranduba, Pouso Redondo, Tubarão e Turvo das safras 2007/2008, 2008/2009, 2009/2010, 2010/2011 e 2011/2012.

	Safras				,	
Cultivares	2007/	2008/	2009/	9/ 2010/ 2011/	 Média	
	2008	2009	2010	2011	2012	
SCS118 Marques	9,00	9,50	8,60	9,20	9,34	9,13
SCS117 CL	8,30	9,00	7,70	9,00	8,50	8,50
Epagri 108	8,30	9,50	9,10	9,40	9,04	9,07

CONCLUSÃO

A cultivar SCS118 Marques apresenta alta estabilidade produtiva é recomendada para o cultivo em todas as regiões produtoras de arroz irrigado com sistema pré-germinado de Santa Catarina.

AGRADECIMENTOS

Aos agricultores, representados pelos Senhores Abel Olivo, Albenor Giusti, Sergio Luchini e Volni Paterno, que permitiram a condução de experimentos em suas propriedades bem como aos técnicos e extensionistas que colaboraram para o desenvolvimento desta nova tecnologia, nosso reconhecimento. À Associação Catarinense dos Produtores de Sementes de Arroz Irrigado (Acapsa), Fundação de Apoio à Pesquisa do Estado de Santa Catarina (Fapesc) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), ao apoio financeiro. Ao Sindicato das Indústrias de Arroz de Santa Catarina (Sindarroz-SC) e a Embrapa Arroz e Feijão (CNPAF) pela análise química dos grãos.

REFERÊNCIAS BIBLIOGRÁFICAS

ISHIY, T.; SCHIOCCHET, M.S.; BACHA, R.E.; ALFONSO-MOREL, D.; TULMAN NETO, A. and KNOBLAUCH, R. Rice Mutant Cultivar SCS114 Andosan. **Plant Mutation Reports**, Vol. 1, N° . 2, p.25, dez. 2006.

TÜLMANN- NETO, A.; ANDO, A.; FIGUEIRA, A.; LATADO, R.R.; SANTOS, P.C.; CORREA, L.S.; PERES, L.E.P.; HAUAGGE, R.; PULCINELLI, C.E.; ISHIY, T.; FERREIRA-FILHO A.W.P. and CAMARGO, C.E.O. Genetic Improvement of Crops by Mutation Techniques in Brazil. **Plant Mutation Reports**, v.2, n.3, p.24-37, abril 2011.