RESPOSTA À BRUSONE DE LINHAGENS ELITE DO PROGRAMA DE MELHORAMENTO GENÉTICO DO IRGA

<u>Débora Favero</u>¹; Gabriela de Magalhães da Fonseca²; Danielle Almeida²; Roberson Diego Souza Almeida³; Solismar Rodrigues Luz⁴; Antonio Folgiarini de Rosso⁵; Oneides Antonio Avozani⁶; Daniel Arthur Gaklik Waldow⁶; Flávia Miyuki Tomita⁷; Camila Scalco⁸

Palavras-chave: Pyricularia oryzae, resistência, variabilidade

INTRODUÇÃO

A brusone, doença causada pelo fungo *Magnaporthe oryzae* B. Couch (anamorfo - *Pyricularia oryzae* Cavara), apresenta grande impacto na produção de arroz mundialmente, sendo sua ocorrência comprovada em cerca de 80 países, em todos os continentes onde o arroz é cultivado, resultando em perdas de 10 a 30% do rendimento global do arroz (PENNISI, 2010; BODDY, 2016). Como o arroz fornece quase 25% das calorias consumidas pelos seres humanos, a brusone é uma ameaça à segurança alimentar mundial (BODDY, 2016).

Em altas severidades a brusone pode destruir completamente as lavouras de arroz. Quando ocorre nas folhas, ela impede o crescimento das plantas e causa a morte foliar prematura, reduzindo a capacidade fotossintética da planta, e, indiretamente, o número de panículas e o peso dos grãos (PINNSCHMIDT et al., 1994). Quando a infecção da panícula ocorre próximo ao florescimento causa a esterilidade parcial ou total das panículas e, quando ocorre após o enchimento dos grãos, pode causar a quebra da panícula na região afetada, sintoma conhecido como "pescoço quebrado", resultando em perdas de produtividade de até 80% (BODDY, 2016; DISTHAPORN, 1994). Além dos efeitos na produtividade, a brusone na panícula afeta a qualidade de grãos, resultando em grãos gessados, que reduzem o rendimento de engenho e o peso dos grãos, aumentando também grãos quebrados (PINNSCHMIDT et al., 1994; CANDOLE et al., 1999).

A utilização de cultivares resistentes à brusone nas folhas e nas panículas têm sido o método de controle da doença mais amplamente utilizado (BONMAN, 1992), mas a resistência tende a ser efêmera devido à adaptação do patógeno. Nesse sentido, a principal estratégia utilizada pelo Programa de Melhoramento Genético do IRGA para a obtenção de cultivares resistentes à brusone tem sido a avaliação de genótipos promissores em condições de alta pressão de inóculo do fungo. O objetivo deste trabalho foi avaliar a reação dos genótipos elite do Programa de Melhoramento Genético do IRGA à *Pyricularia oryzae*, visando lançar cultivares resistentes à doença, assim como identificar genitores para resistência à brusone.

MATERIAL E MÉTODOS

Nas últimas três safras agrícolas, foi realizado ensaio em Torres/RS, seguindo a metodologia de avaliação *hot spot* (CORREA-VICTORIA & ZEIGLER, 1993; OGOSHI, 2015), que tem como principal característica a alta pressão de inóculo do fungo, o que permite avaliar de forma

¹ Engª. Agrª. Me. Seção de Melhoramento Genético/IRGA. Av. Bonifácio Carvalho Bernardes, 1494. Bairro João Carlos Wilkens, Cachoeirinha/RS. 94930-030. debora-favero@irga.rs.gov.br;

Engª. Agrª., Dra. Seção de Melhoramento Genético/IRGA;

Acadêmico de Agronomia /Universidade Luterana Do Brasil (ULBRA);

⁴ Téc. Agr., Seção de Melhoramento Genético/IRGA;

Engº. Agrº. Dr. Seção de Melhoramento Genético/IRGA;

Engº. Agrº. Me. Seção de Melhoramento Genético/IRGA;

Engº. Agrº., Seção de Sementes/Gerente da Estação Experimental do Arroz/IRGA;

⁸ Engª. Agrª. Me. Secretaria de Agricultura do Estado de São Paulo.

completa a resistência, já que as raças fisiológicas do patógeno podem atuar em todas as fases de desenvolvimento das plantas. Foram realizadas três avaliações durante o ciclo da cultura, duas avaliações foliares e uma na panícula. Foi utilizado um conjunto de técnicas, além do local com condições naturalmente favoráveis para a expressão da suscetibilidade/resistência das plantas, para favorecer a alta pressão e variabilidade de *P. oryzae*, sendo elas: semeadura tardia, manutenção do viveiro em condições de sequeiro (visto a regularidade de chuvas no local), implantação de faixas compostas por plantas suscetíveis (bordaduras infestantes) inoculadas artificialmente e elevadas doses de nitrogênio.

A semeadura manual das bordaduras infestantes foi realizada no início da segunda quinzena de novembro (aproximadamente 20 dias antes da semeadura dos genótipos avaliados). A bordadura foi formada por uma mistura de cultivares suscetíveis em faixas transversais às linhas dos materiais genéticos testados. As cultivares utilizadas para a mistura, conforme disponibilidade na safra, foram: PUITÁ INTA CL, Bluebelle, BR-IRGA 409, BR-IRGA 410, EEA 406, El Paso L 144, Epagri 109, Fanny, GURI INTA CL, INIA Olimar, IRGA 416, IRGA 417, IRGA 420, IRGA 421, IRGA 422 CL, SCS 112, SCS 116 SATORU, SCSBRS Tio Taka e IRGA 429. Utilizou-se densidade de semeadura média de 550 kg ha⁻¹.

Os genótipos foram semeados entre os dias 12 e 13 de dezembro, utilizando-se semeadora mecânica, com linhas de 3 m de comprimento, espaçamento entrelinhas de 0,3 m e densidade de 1 g.m⁻¹. Foram avaliados os materiais em ensaios Preliminar (PRL), Avançado (AVD) e de Valor de Cultivo e Uso (VCU), totalizando, na safra 2016/17, 266 genótipos avaliados em folha e 213 em panícula. Na safra 2017/18, avaliou-se 231 materiais em folha e panícula e, na safra 2018/19, 226 genótipos em folha e 224 em panícula. A adubação de base foi de 500 kg.ha⁻¹ de fertilizante NPK, incorporado com grade de discos em toda a área, por ocasião da semeadura das bordaduras. A adubação de cobertura foi de 250 kg.ha⁻¹ de ureia, escalonada em três aplicações: 100 kg.ha⁻¹ aos 30 dias após a semeadura (DAS), 100 kg.ha⁻¹ aos 50 DAS e 50 kg.ha⁻¹ aos 70 DAS. As bordaduras foram inoculadas com suspensão de esporos de P. oryzae aproximadamente um mês após sua semeadura (segunda quinzena de dezembro), com uma mistura de 51, 63 e 114 isolados nas safras 2016/17, 2017/18 e 2018/19, respectivamente. As duas avaliações/safra da reação à brusone nas folhas foram realizadas durante os meses de fevereiro e março, com intervalo de cerca de 20 dias entre avaliações. A avaliação/safra das panículas foi realizada entre março e maio, conforme o ciclo dos materiais, sendo avaliados somente os materiais previamente selecionados, por características fenotípicas. As notas foram estabelecidas conforme a escala preconizada pelo IRRI (1996), sendo para as folhas 0, 1, 2 e 3 = Resistente; 4 e 5 = Moderadamente Resistente; 6 e 7 = Moderadamente Suscetível; 8 e 9 = Suscetível. Para as panículas 0 e 1= Resistente; 3= Moderadamente Resistente; 5 e 7= Moderadamente Suscetível e 9= Suscetível. O Programa de Melhoramento do IRGA procura, dentre outras características, manter apenas genótipos classificados como resistentes e moderadamente resistentes à brusone. Por isso, esses grupos serão aqui tratados como um único, denominado resistentes.

RESULTADOS E DISCUSSÃO

Os resultados das avaliações de folhas e panículas obtidos nos ensaios de rendimento de grãos estão apresentados nas Tabelas de 1 a 3. Os materiais avaliados nos ensaios Preliminar (PRL), Avançado (AVD) e Valor de Cultivo e Uso (VCU), nas três últimas safras, apresentaram resposta de resistência (resistentes e moderadamente resistentes) acima de 85% nas folhas e panículas. No PRL, houve reação de resistência em folha em mais de 94% dos genótipos avaliados nas três safras. Nas panículas, 98,2% demonstraram resistência na safra 2016/17, 90% na safra 2017/18 e 85,3% na safra 2018/19 (Tabela 1).

Tabela 1. Reação à brusone nas folhas e nas panículas dos genótipos em ensaio Preliminar (PRL), avaliados pelo Programa de Melhoramento do IRGA, nas safras 2016/2017, 2017/2018 e 2018/2019 em Torres-RS.

PRELIMINAR (PRL)							
	Safra 2016/17		Safra 2017/18		Safra 2018/19		
Reação	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	
Resistente	94,17	84,21	2,50	79,17	93,38	80,00	
Moder. Resistente	0,00	14,04	95,00	10,83	5,88	5,19	
Moder. Suscetível	5,00	1,75	2,50	7,50	0,74	13,33	
Suscetível	0,83	0,00	0,00	2,50	0,00	1,48	
População avaliada	120	114	120	120	136	135	

Já nos genótipos em AVD, mais de 92% demonstraram resistência em folha, nas três safras avaliadas. Na avaliação de panículas, o percentual de resistência foi de 96,2% na safra 2016/17, 82,3% na safra 2017/18 e 89,5% na safra 2018/19 (Tabela 2). Os resultados obtidos nos ensaios PRL e AVD foram satisfatórios, sendo a maioria dos materiais considerados resistentes.

Tabela 2. Reação à brusone nas folhas e nas panículas dos genótipos em ensaio Avançado (AVD), avaliados pelo Programa de Melhoramento do IRGA, nas safras 2016/2017, 2017/2018 e 2018/2019 em Torres-RS.

AVANÇADO (AVD)							
	Safra 2016/17		Safra 2017/18		Safra 2018/19		
Reação	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	
Resistente	92,60	94,23	8,06	72,58	87,93	89,47	
Moder. Resistente	0,00	1,92	90,32	9,68	8,62	0,00	
Moder. Suscetível	5,60	3,85	1,61	6,45	3,45	8,77	
Suscetível	1,90	0,00	0,00	11,29	0,00	1,75	
População avaliada	54	52	63	63	58	57	

No VCU, último ensaio realizado antes do lançamento de uma nova cultivar, os materiais avaliados apresentaram cerca de 89% de resistência em folhas e panículas nas safras 2016/17 e 2017/18. Na safra 2018/19 a reação de resistência dos genótipos foi maior, ficando acima dos 93% em folhas e panículas (Tabela 3). Os altos percentuais de resistência obtidos nesse ensaio eram esperados, uma vez que um dos principais objetivos do programa de melhoramento genético do IRGA é lançar materiais resistentes à brusone.

Tabela 3. Reação à brusone nas folhas e nas panículas dos genótipos em ensaio de Valor de Cultivo e Uso (VCU), avaliados pelo Programa de Melhoramento do IRGA, nas safras 2016/2017, 2017/2018 e 2018/2019 em Torres-RS.

VALOR DE CULTIVO E USO (VCU)							
	Safra 2016/17		Safra 2017/18		Safra 2018/19		
Reação	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	Folha (%)	Panícula (%)	
Resistente	86,96	89,36	4,17	75,00	93,75	87,50	
Moder. Resistente	2,17	0,00	85,42	14,58	3,13	6,25	
Moder. Suscetível	0,00	4,26	6,25	4,17	3,13	3,13	
Suscetível	10,87	2,13	4,17	6,25	0,00	3,13	
População avaliada	92	47	48	48	32	32	

CONCLUSÃO

O programa de Melhoramento Genético do IRGA tem linhagens elites promissoras com resistência à brusone que podem ser utilizadas em cruzamentos, como fontes de resistência, e/ou lançadas como novas cultivares.

AGRADECIMENTOS

Agradecemos ao CNPq pela concessão de bolsas de iniciação científica.

REFERÊNCIAS BIBLIOGRÁFICAS

BODDY, L. Pathogens of Autotrophs. In: WATKINSON, S.C.; BODDY, L.; MONEY, N.P. The Fungi. Academic Press, 3ed., p. 245-292. 2016.

BONMAN, J.M. Durable resistance to rice blast environmental influences. Euphytica, n. 63, p.15 -123. 1992.

CANDOLE, B.L.; SIEBENMORGEN, T.J.; LEE, F.N.; CARTWRIGHT, R.D. The effect of panicle blast on the physical properties and milling quality of rice cultivar 'M202'. Research Series-Arkansas Agricultural Experiment Station, n. 468, p.142-147. 1999.

CORREA-VICTORIA, F.J.; ZEIGLER, R.S. Pathogenic variability in Pyricularia oryzae at a rice blast "hot spot" breeding site in eastern Colombia. Plant Disease, 77: 1029-1035. 1993.

DISTHAPORN, S. Current rice blast epidemics and their management in Thailand. In: Zeigler, R.S.; Leong, S.A.; Teng, P.S. Rice blast disease. CAB International, Wallingford, UK, in association with IRRI, Manila, Philippines. p.333-342. 1994.

INTERNATIONAL RICE RESEARCH INSTITUTE (IRRI). Standard evaluation system for rice. Manila, Filipinas. 4 ed., 52 p. 1996.

OGOSHI, C. Epidemia de Brusone do Arroz no Estado do Rio Grande do Sul. Lavoura Arrozeira, Porto Alegre, n. 465, p.13-15. 2015.

PENNISI, E. Armed and dangerous. Science, n. 327, p.804-805. 2010.

PINNSCHMIDT, H. O.; TENG, P. S.; YONG, L. Methodology for quantifying rice yield effects of blast. In: ZEIGLER, R. S.; LEONG, S. A.; TENG, P. S. (Ed.). Rice blast disease. Wallingford: CAB International, p. 381-408. 1994.