MANEJO DO ARROZ VERMELHO ATRAVÉS DE ROTAÇÃO DE CULTURAS E HERBICIDAS

Machado, S.L. de O. ⁽¹⁾; Marchezan, E. ⁽²⁾, AVila, L.A. de. ⁽¹⁾ Eng. Agr. Prof. Tit Departamento de Defesa Fitossanitária da UFSM; ⁽²⁾ Eng. Agr. Dr. Prof. Tit. Departamento de Fitotecnia da UFSM; ⁽³⁾ Departamento de Fitotecnia da UFSM. Campus Universitário UFSM, CEP: 97.105-900 - Santa Maria, RS.

A presença do arroz vermelho em quase toda a área plantada com arroz irrigado no Rio Grande do Sul, tem-se constituído em uma das causas que mais contribuem para a redução da produtividade, a tal ponto, em que a maioria dos técnicos e produtores não têm dúvida em afirmar que o arroz vermelho é o principal problema da layoura arrozeira.

Há muito tempo, o arroz vermelho é considerado o principal fator impeditivo de ganhos na produtividade para o arrozeiro gaúcho, pois os prejuízos econômicos provocados à lavoura são significativos, baixando a produtividade, aumentando os custos e tornando-nos menos competitivos no mercado agrícola. A maioria dos municípios da Metade Sul do Estado tem, em grande parte, sua base da economia na orizicultura. Portanto, um problema que tem cunho econômico, pela perda de produção e produtividade, transforma-se em graves dificuldades sociais, gerando desemprego, inadimplência, redução na arrecadação pública dos municípios que tem a sua base econômica na orizicultura e aumento no custo social na região.

A pesquisa tem buscado incessantemente soluções para este problema. Várias técnicas surgiram até então, muitas com aspectos positivos, e em muito contribuíram para minimizar os efeitos do arroz vermelho; mas todas com limitações. A realidade é, que o problema do arroz vermelho perdura nos arrozais. Em áreas de várzeas, a rotação do arroz irrigado com culturas de sequeiro tem sido apontada como alternativa eficiente para o controle de arroz vermelho (BRAVERMAN et al., 1985; GRIFFIN & HARGER, 1986; CORRADINI et al., 1998), promovendo também aumento do rendimento de grãos do arroz cultivado semeado na sequência da rotação. Para que a rotação seia um método eficiente no controle do arroz vermelho, é necessário que se utilize herbicidas adequados e realize uma aplicação eficiente; e pode ser realizada com culturas de verão como soja, milho, sorgo ou pastagens de verão ou de inverno, utilizando-se a interação lavoura-pecuária. Nesse sentido, desenvolveu-se um experimento a campo durante quatro safras agrícolas (1994/95, 1995/96, 1996/97 e 1997/98) na localidade de Arrojo do Só, distrito de Santa Maria, RS, objetivando avaliar a eficiência de diversos herbicidas usados no controle de arroz vermelho nas culturas do milho e da soja cultivadas em rotação com arroz irrigado. O delineamento experimental foi de blocos ao acaso, em esquema fatorial 20 x 2, com tres repetições. As unidades experimentais mediram 24m² (7m x 4m). A sequência da rotação de culturas e os tratamentos de controle do arroz vermelho encontram-se nas Tabelas 1 e 2.

Em geral, ocorreu redução da infestação de arroz vermelho variável com o tratamento de controle realizado (Tabela 3). Os resultados mostraram também que a rotação de arrozmilho-milho-arroz, usando-se a atrazine (5,0 litros/ha) como herbicida no milho e de arrozmilho-soja-arroz utilizando-se de metolachlor (3,0 litros/ha) aplicado em pré-semeadura com incorporação superficial como herbicida na soja, constituem alternativas eficientes para a redução da infestação de arroz vermelho e proporcionaram os mais altos rendimentos de arroz (Tabela 4); enquanto que o tratamento capinado ou com a aplicação de trifluralin mostraram-se pouco eficientes no controle desta infestante; confirmando resultados de BRAVERMAN et al. (1985), GRIFFIN et al. (1986) de que culturas de sequeiro cultivadas em rotação com arroz, combinado com a utilização de herbicidas específicos, reduzem as infestações de arroz vermelho e proporcionam aumento da produtividade do arroz irrigado.

A quantidade de grãos inteiros de arroz após o beneficiamento (Tabela 3) e a produtividade (Tabela 4) estão sempre associados negativamente com o grau de infestação de arroz vermelho; e que a aspersão da hidrazida maleica reduziu a formação das panículas e a

quantidade de massa seca produzida do arroz vermelho (Tabela 4). MENEZES (1993) e MACHADO et al. (1998), enfatizam que a hidrazida maleica pode ser usada no manejo complementar do arroz vermelho; evitando-se assim a produção de sementes desta infestante no arrozal. Por outro lado, os autores salientam que para tal é necessário que a hidrazida maleica seja aplicada num momento em que ocorra diferenças entre a época de florescimento do arroz vermelho e das cultivares de arroz. Os resultados mostram também que o rendimento do arroz sem a aplicação da hidrazida maleica foi sempre maior do que com a aplicação do produto. Isto deve-se a presença de grãos de arroz vermelho oriundos das plantas que foram colhidas junto com as de arroz; daí a maior produtividade. Nesse sentido, MENEZES (1993) enfatiza que quando o produto é aplicado nos estádios de pleno florescimento e de grão leitoso de cultivares precoces de arroz não ocorre formação de grãos de arroz vermelho; porém se aspergido no estádio de grão pastoso, a formação de grão de arroz vermelho é parcial e estimada em 20% comparada com a testemunha.

Tabela 1- Cronograma da rotação de culturas visando o controle de arroz vermelho no quadriênio 1994/98 em solo de várzea Santa Maria RS 1999

	di icino 1994/96 cin	solo de valzea, ball	a iviana, 133, 1333				
Rotação	Safras Agrícolas (anos)						
Cultural	1° ano (1994/95)	2º Ano (1995/96)	3° Ano (1996/97)	4º Ano (1997/98)			
A/M/M/A	Arroz	Milho	Milho	Arroz			
A/S/S/A	Arroz	Soja	Soja	Arroz			
A/M/S/A	Arroz	Milho	Soja	Arroz			
A/A/A/A	Arroz	Arroz ⁱ	Arroz ¹	Arroz			
A/A/A/A	Arroz	Arroz ²	Arroz ²	Arroz			

Aplicação de molinate "Ordram 6E" (8,0 litros/ha) e incorporação ao solo com grade de disco na profundidade de 0,10m; e as sementes de arroz protegidas com anidrido naftálico (0.5% v/v).

² Aplicação de hidrazida maleica "FAZOR CS" (9,5 litros/ha). O produto foi aplicado quando os grãos de arroz branco encontravam-se no estádio pastoso ou mais amadurecidos, e as plantas de arroz vermelho no estádio compreendido sem a emissão de panículas até aquelas plantas com os grãos no estádio leitoso.

Tabela 2 - Tratamentos de controle do arroz vermelho nas culturas do milho e da soja. Santa Maria, RS, 1999

Tratamento s	Milho ' Cargill C 125'	Soja ' <i>IAS -5</i> '		
T_1	Metolachlor "Dual" (3,0 litros/ha) - PRÉ ³	Metolachlor "Dual" (3,0 litros/ha) - PRÉ		
T_2	Atrazine "Atrazinax " (5,0 litros/ha) - PRÉ	Metolachlor "Dual" (3,0 litros/ha) - PSI (s)		
T_3	Trifluralin "Premerlin" (4,0 litros/ha) - PRÉ	Trifluralin "Premerlin" (2,0 litros/ha) - PSI		
T ₄	Nicosulfuron "Sanson" (1,25 litros/ha) - PÓS¹	Clethodim "Select" (0,4 litros/ha) - PÓS ²		
T_5	Testemunha infestada	Testemunha infestada		
T_6	Tratamento capinado ³	Tratamento capinado ³		

Aplicação em pós-emergência com o milho no estádio de quatro folhas e o arroz vermelho no estádio de tres folhas a um afilho.

² Acrescido de Assist (0,5% v/v) e aspergido com o arroz vermelho no estádio de dois a tres afilhos.

³ Capinas realizadas aos 17 e 35 dias após a emergência das culturas.

Tabela 3 - Efeito da rotação de culturas, herbicidas na infestação de arroz vermelho e e também da hidrazida maleica na renda de grãos inteiros de arroz 'cv. IRGA 416' irrigado. Santa Maria. RS. 1999

	Arroz vermelho					Аггоz (1997/98)			
Tratamentos	plantas/m ⁻²⁻²			Panículasm ⁻²³			Grãos inteiros (%)		
	1995/96	1996/97	1997/9	1995/9	1996/97	1997/9	s/HM ⁶	c/HM	Média
			8	6		8			
$A/M_{TI}/M_{TI}/A$	73 c*	54 c	18 c	210 Ь	164 c	59 c	52	54	53 bc
$A/M_{T2}M_{T2}/A$	12 c	8 c	3 c	36 d	22 d	5 c	58	62	60 a
$A/M_{T3}/M_{T1}/A$	497 a	474 a	469 a	773 a	785 a	832 a	51	53	52 c
$A/M_{T4}/M_{T3}/A$	17 c	11 c	9 a	48 d	29 d	10 c	56	58	57 a
$A/M_{T5}/M_{T5}/A$	468 a	496 a	515 a	714 a	785 a	816 a	51	53	52 c
$A/M_{T6}/M_{T6}/A$	0 с	0 c	0 c	654 a	721 a	799 a	52	54	53 bc
$A/S_{TI}/S_{TI}/A$	67 c	49 с	15 c	185 c	133 cd	47 c	53	55	54 b
$A/S_{T2}S_{T2}/A$	59 c	31 c	10 c	124 cd	68 d	21 c	56	58	57 a
$A/S_{T3}/S_{T3}/A$	63 c	42 c	12 c	155 cd	119 d	38 c	54	56	55 ab
$A/S_{T4}/S_{T4}/A$	19 c	14 c	16 c	61 d	47 d	38 c	55	57	56 a
$A/S_{T5}/S_{T5}/A$	497 a	474 a	469 a	773 a	785 a	832 a	51	53	52 c
$A/S_{T6}/S_{T6}/A$	0 c	0 c	0 с	619 a	698 a	735 a	51	53	52 c
$A/M_{TI}/S_{TI}/A$	259 b	287 b	299	488 b	467 b	409 Ь	51	53	52 c
$A/M_{T2}S_{T2}/A$	15 c	9 c	5 c	41 d	25 d	7 c	56	62	59 a
$A/M_{T3}/S_{T3}/A$	459 a	437 a	449 a	769 a	737 a	825 a	52	54	53 bc
$A/M_{T4}/S_{T4}/A$	429 a	468 a	512 a	699 a	732 a	796 a	51	53	52 c
$A/M_{TS}/S_{TS}/A$	487 a	521 a	543 a	698 a	665 a	785 a	50	52	51 c
$A/M_{T6}/S_{T6}/A$	0 с	0 с	0 с	631 a	743 a	821 a	52	54	53 bc
A/A ⁴ /A ⁴ /A	24 c	15 c	10 c	70 d	43 d	27 c	56	58	57 a
A/A ⁵ /A ⁵ /A	65 c	29 c	7 c	133 cd	72 d	19 c	57	59	58 a
Média	176	171	168	394	392	396	B 53,2	A 55,6	
CV (%)	12,34	11,95	9,45	6,78	13,97	15,84		6,34	

^{*} Médias não antecedidas da mesma letra maiúscula nas linhas e não seguidas da mesma letra minúscula nas colunas diferem entre si pelo teste de Tukey a 5% de probabilidade de erro.

 $^{^{1}}$ Dados analisados com transformação arc. sen $\sqrt{\%/100}$.

² Amostragem realizada aos 20 dias após a emergência das culturas.

³ Amostragem realizada na colheita.

⁴Aplicação de molinate "Ordram 6E" (8,0 litros/ha) e incorporação do produto ao solo com grade de disco na profundidade de 0,10m; e as sementes de arroz prtegidas com anidrido naftálico (0,5% v/v).

⁵ Aplicação de hidrazida maleica "FAZOR CS" (9,5 litros/ha). O produto foi aspergido quando os grãos de arroz branco encontravam-se no estádio pastoso ou mais amadurecidos, e as plantas de arroz vermelho desde o estádio sem a emissão de panículas até aquelas plantas com os grãos no estádio leitoso.

⁶ Hidrazida maleica (Fazor CS).

Tabela 4 - Efeito da rotação de culturas, herbicidas e da hidrazida maleica no arroz vermelho e na produtividade do arroz 'cv. *IRGA 416*' irrigado. Santa Maria. RS, 1999

	_								
	Safra Agrícola - 1997/98 (4º ano)								
Tratamentos	Arroz Vermelho					Arroz			
	Panículas Formadas/m² (%)2		Massa Seca (g/m²)3			Rendimento (Kg/ha)			
-	s/HM ⁶	c/HM	s/HM		Média	s/HM	c/HM	Média	
$A/M_{T1}/M_{T1}/A$	100 a*	2 d	656	594	625 efgh	4365	4169	4267 fg	
$A/M_{T2}M_{T2}/A$	100 a	3 d	347 .	351	324 gh	6569	6536	6.552 a	
$A/M_{T3}/M_{T1}/A$	100 a	5 cd	756	689	722 defg	3650	3284	3467 h	
$A/M_{T4}/M_{T3}/A$	100 a	.4 cd	476	393	434 gh	5345	5229	5287 cd	
$A/M_{T5}/M_{T5}/A$	100 a	20 a	1456	1378	1417 ab	1245	776	1010 j	
$A/M_{T6}/M_{T6}/A$	100 a	15 abc	1123	936	1034 bcd	2634	1986	2310 i	
A/S _{T1} /S _{T1} /A	100 a	10 cd	635	596	616 efgh	4584	4289	4441 cd	
$A/S_{T2}S_{T2}/A$	100 a	5 cd	490	348	419 gh	5351	5264	5304 cd	
$A/S_{T3}/S_{T3}/A$	100 a	10 cd	594	472	533 fgh	4963	4398	4681 def	
$A/S_{T4}/S_{T4}/A$	100 a	4 cd	486	429	458 gh	5126	4996	5061 cde	
$A/S_{T5}/S_{T5}/A$	100 a	20 a	1654	1538	1596 a	939	556	747 j	
$A/S_{T6}/S_{T6}/A$	100 a	15 abc	1201	1147	1174 bc	2375	2189	2310 i	
$A/M_{T1}/S_{T1}/A$	100 a	5 cd	753	683	718 defg	3486	3178	3332 h	
$A/M_{T2}S_{T2}/A$	100 a	2 d	267	198	233 h	6353	6298	6325 ab	
$A/M_{T3}/S_{T1}/A$	100 a	10 cd	697	503	600 efgh	3976	3376	3669 gh	
$A/M_{T4}/S_{T3}/A$	100 a	10 cd	531	474	503 gh	4267	4178	4227 fg	
$A/M_{T5}/S_{T5}/A$	100 a	17 ab	1058	912	985 cde	1183	957	1070 j	
$A/M_{T6}/S_{T6}/A$	100 a	15 abc	964	865	914 cdef	2123	1980	2058 i	
$A/A^3/A^3/A$	100 a	5 cd	368	298	333 gh	5222	5012	5117 cde	
A/A ⁴ /A ⁴ /A	100 a	2 d	345	134	239 h	5689	5646	5667 bc	
Média	A 100	B 9,16	A 743	B 644	*****	A 3973	B 3714		
CV (%)	7	,97		31,7	8		10,53		

^{*} Médias não antecedidas da mesma letra maiúscula nas linhas e não seguidas da mesma letra minúscula nas colunas diferem entre si pelo teste de Tukey a 5% de probabilidade de erro.

¹ Dados analisados com transformação arc, sen $\sqrt{\frac{\%}{100}}$,

³ Amostragem realizada na pré-colheita do arroz.

⁴Aplicação de molinate "Ordram 6E" (8,0 litros/ha) e incorporação do produto ao solo com grade de disco na profundidade de 0,10m; e as sementes de arroz protegidas com anidrido nafiálico (0,5% v/v).

⁵ Áplicação de hidrazida maleica "FAZOR CS" (9,5 litros/ha). O produto foi aspergido quando os grãos de arroz branco encontravam-se no estádio pastoso ou mais amadurecidos, e as plantas de arroz vermelho desde o estádio sem a emissão de panículas até aquelas plantas com os grãos no estádio leitoso.

⁶ Hidrazida maleica (Fazor CS).

- BRAVERMAN, M.P., LAVY, T.L., TALBERT, R.E. Effects of metolachlor residues on rice (*Oryza sativa*). Weed Science, Champaing, v. 33, n. 6, p.819-824, 1985.
- CORRADINI, J.Z., ANDRES, A., AVILA, L. A. de. et al. Rotação de culturas e pousio do solo reduzem o banco de sementes de arroz vermelho (Oryza sativa L.) em solo de várzea. In: SALÃO DE INCIAÇÃO CIENTÍFICA, 10., e \FEIRA DE INICIAÇÃO CIENTÍFICA, 4., 1998, Porto Alegre. Livro de Resumos...Porto Alegre: UFRGS, 1998, 503p., p.127.
- GRIFFIN, J.L., HARGER, T.R. Red rice (Oryza sativa) an junglerice (Echinochloa colonum) control in solid-seeded soybean (Glycine max). Weed Science, Champaing, v. 34, n. 4, p.582-586, 1986.
- MACHADO, S.L. de O., REDES, A.C., BRANDI, F., AVILA, L.A. de. Hidrazida maleica no manejo do arroz vermelho (*Oryza sativa* L.) na cultura do arroz irrigado. In: REUNIÃO NACIONAL DE PESQUISA DE ARROZ, 6., 1998, Goiânia, GO. Perspectivas para a cultura do arroz nos ecossistemas de várzeas e terras altas. Goiânia: EMBRAPA_CNPAF, 1998, 514p. p. 387-390. (EMBRAPA-CNPAF, Documentos, 85).
- MENEZES, V.G. Uso de hidrazida maleica no manejo do arroz vermelho em arroz irrigado. In: REUNIÃO DA CULTURA DO ARROZ IRRIGADO, 20, 1993, Pelotas RS. Anais... Pelotas, EMBRAPA/CPACT, 1993, p. 239-241. 305p. (EMBRAPA-CPACT, Documentos, 1)