ENSAIO DE VALOR CULTIVO E USO (VCU) DE HÍBRIDOS AVALIADOS PELO INSTITUTO RIO GRANDENSE DO ARROZ NA SAFRA 2012/13

<u>Daniel Arthur Gaklik Waldow</u>¹; Antonio Folgiarini de Rosso²; Ana Paula Valentini¹; Gabriela Magalhães da Fonseca¹; Oneides Antonio Avozani¹; Gustavo Rodrigo Daltrozo Funck²; Sintia da Costa Trojan³; Roberto Longaray Jaeger³; Davi Piazeetta⁴; Gilmar Neves⁴; Jorge Luiz Ceolin Cremonese⁴; Ingrid Tomazi⁴; Michel Silva da Costa⁴; Elusardo Barrozo⁴; Izabel Cristina Panni de Oliveira⁴; Ana Cláudia Paim Velho⁴.

Palavras-chave: rendimento de grãos, qualidade de grãos, heterose padrão.

INTRODUÇÃO

O vigor híbrido em arroz é expresso através de um sistema radicular mais vigoroso, elevada capacidade de afilhamento, maior número de panículas por área e maior peso de grãos, possibilitando maiores incrementos em produtividade. Por outro lado, o arroz é uma espécie autógama que necessita da utilização de genes de macho-esterilidade para o desenvolvimento de híbridos, o que reduz a produtividade de sementes híbridas comerciais, tornando maior o custo na comercialização.

O Instituto Rio Grandense do Arroz (IRGA) iniciou seu Programa de Melhoramento de Arroz Híbrido na safra 2002/03 e objetiva desenvolver linhagens parentais e identificar as melhores combinações de híbridos com alto potencial produtivo que superem 15 a 20% a produtividade da melhor cultivar recomendada, com ampla adaptação à região Sul do Brasil e alta qualidade de grãos.

Este trabalho teve por objetivo avaliar genótipos de arroz híbridos quanto ao potencial produtivo, características agronômicas e a interação com os ambientes.

MATERIAL E MÉTODOS

O experimento foi conduzido em cinco locais do estado do Rio Grande do Sul: Cachoeira do Sul, Uruguaiana, Santa Vitória do Palmar, Camaquã e Cachoeirinha. Foram testados três híbridos comerciais do IRGA/Fazenda Ana Paula (QM1010, QM1010 CL e Prime CL), três híbridos promissores da parceria IRGA/CIAT (CT23020, CT23034 e CT23057) e dois híbridos promissores da RiceTec (XP 111 CL e XP 112 CL). Além desses, foram avaliadas as cultivares testemunhas IRGA 417, IRGA 424 e IRGA 426.

O delineamento experimental foi em blocos casualizados com quatro repetições. A densidade de semeadura para os híbridos foi de 40 Kg ha⁻¹ e para as cultivares de 90 Kg ha⁻¹. A emergência ocorreu dia 25/10/2012 em Uruguaiana, 01/11/2012 em Santa Vitória do Palmar, 02/11/2012 em Cachoeirinha, 05/11/2012 em Cachoeira do Sul e Camaquã. A adubação de base foi realizada conforme análise de solo de cada local. A adubação nitrogenada foi de 132 Kg ha⁻¹ parcelas em duas épocas.

Foi avaliado o vigor inicial das plântulas, número de dias da emergência à 80% do florescimento (DEF), estatura de plantas, rendimento de grãos corrigindo para umidade de 13%, esterilidade de espiguetas, rendimento de engenho, índice de centro branco (CB), temperatura de gelatinização (TG), teor de amilose. Os genótipos foram avaliados para reação à brusone em duas repetições no viveiro conduzido no município de Torres, RS.

Para o rendimento de grãos, os dados foram submetidos à análise de variância individual e conjunta (SAS, 2000). A comparação de médias foi realizada através da média

⁴ Tec. Agr., Instituto Rio Grandense do Arroz

¹ Eng^o Agr^o, M. Sc., Instituto Rio Grandense do Arroz – IRGA. Av. Bonifácio C. Bernardes, 1494, CEP: 94930-030 Cachoeirinha-RS. E-mail: daniwaldow@bol.com.br

² Eng^o Agr^o. Dr., Instituto Rio Grandense do Arroz

³ Eng^o Agr^o, Istituto Rio Grandense do Arroz

ajustada pelo teste de Tukey-Kramer ao nível de 5% de probabilidade. As demais variáveis foram calculadas pela média das quatro repetições em cada local.

RESULTADOS E DISCUSSÃO

Os resultados obtidos através da análise de variância para o rendimento de grãos mostram que houve interação significativa entre os genótipos e os locais (P <0,0001). Além disso, o coeficiente de variação (CV) apresentou valores baixos entre 5,92% e 10,28% (Tabela 1), mostrando que houve uniformidade dentro dos experimentos. De maneira geral, os híbridos apresentaram elevado potencial produtivo superando às cultivares testemunha. Na média de todos os locais o híbrido mais produtivo foi QM 1010 com 12.937 Kg ha⁻¹ enquanto que a cultivar mais produtiva foi a IRGA 424 com 10.560 Kg ha⁻¹, com uma heterose padrão de 22,5% (Tabela 1).

Tabela 1. Rendimento de grãos de genótipos de arroz híbrido em cinco locais do Rio Grande do Sul, safra 2012/13. IRGA/EEA, Cachoeirinha, 2013.

Conátinos	Rendimento de Grãos (Kg ha ⁻¹)							
Genótipos •	CS	URU	SVP	CAM	CCH	Média		
QM 1010	17330 a ¹	14194 a	12591 ab	10165 a	10403 ab	12937		
XP 111 CL	15888 ab	13285 a	13080 a	9808 a	10768 a	12566		
QM 1010 CL	16362 ab	14076 a	11623 ab	9871 a	9963 ab	12379		
XP 112 CL	14577 abc	12246 ab	11630 ab	9280 ab	9831 ab	11513		
CT23034H	14839 abc	11853 ab	10150 bcd	9668 ab	9353 bc	11172		
Prime CL	11868 c	12235 ab	10451 bc	8980 ab	9701 ab	10647		
IRGA 424	14372 abc	13168 a	8519 cd	8655 ab	8086 cd	10560		
CT23020H	14099 bc	12299 ab	7875 de	9011 ab	8828 bcd	10423		
CT23057H	13657 bc	12371 ab	5506 e	9683 ab	8982 bcd	10040		
IRGA 426	12012 c	11829 ab	8058 de	8417 ab	7704 cd	9604		
IRGA 417	12081 c	9458 b	8651 cd	7847 b	7658 d	9139		
Média	14280 A ²	12456 B	9830 C	9217 C	9207 C	10998		
CV (%)	9,06	10,28	9,10	6,72	5,92	9,18		
Vantagem (%)	20,6	7,8	51,2	17,4	33,2	22,5		

CS=Cachoeira do Sul; URU=Uruguaiana; SVP=Santa Vitória do Palmar; CAM=Camaquā; CCH=Cachoeirinha; ¹Média seguida pela mesma letra minúscula na coluna não diferem estatisticamente pelo teste de Tukey-Kramer a 5% de probabilidade; ³Média seguida pela mesma letra maiúscula na linha não diferem estatisticamente pelo teste de Tukey-Kramer a 5% de probabilidade; ³Média seguida pela mesma letra maiúscula na linha não diferem estatisticamente pelo teste de Tukey-Kramer a 5% de probabilidade;

O local com maior produtividade foi Cachoeira do Sul com média de 14.280 Kg ha⁻¹. Em Cachoeira do Sul, Uruguaiana e Camaquã o híbrido QM 1010 foi o mais produtivo, enquanto que em Santa Vitória do Palmar e Cachoeirinha o híbrido promissor XP 111 CL foi o mais produtivo. Em Cachoeira do Sul o híbrido QM 1010 apresentou o maior rendimento de todo o experimento com média de 17.330 Kg ha⁻¹. Entre as cultivares o IRGA 424 apresentou as maiores produtividades na maioria dos locais, apenas em Santa Vitória do Palmar a cultivar IRGA 417 obteve rendimento maior (Tabela 1).

A maior heterose padrão (vantagem em %) foi encontrada em Santa Vitória do Palmar, onde a produtividade do melhor híbrido foi 51,2% maior que a da melhor cultivar testemunha. Enquanto que a menor heterose padrão de 7,8% foi observada em Uruguaiana (Tabela 1). As vantagens do híbrido em relação a cultivar foram diferentes em cada local, em geral as maiores vantagens são observadas em locais com menor potencial produtivo devido à maior diferença de produtividade entre a cultivar e o híbrido. Por outro lado, Cachoeira do Sul obteve maior média de produtividade dos locais e mesmo assim mostrou

elevada heterose padrão com 20,6% (Tabela 1).

Em relação aos híbridos promissores da parceria IRGA/CIAT, o genótipo CT23034 apresentou maior rendimento de grãos com média de 11.172 Kg ha 1. O híbrido Prime CL produziu 10.647 Kg ha 1, na média de todos os locais, sendo uma alternativa com ciclo precoce e boa produtividade (Tabela 2).

Tabela 2. Características agronômicas e Rendimento de engenho de genótipos híbrido avaliados do Rio Grande do Sul, safra 2012/13. IRGA/EEA, Cachoeirinha 2013

C	aciloeiiii	iiia, 2013.				
Genótipos	Vigor ¹	Estatura de plantas (cm)	DEF	Esterilidade de espiguetas (%)	Rendimento de inteiros (%)	
	ССН	Média ²	Média	cs	Média	
QM 1010	4	98	91	11,3	54	
XP 111 CL	6	91	86	13,0	61	
QM 1010 CL	5	97	94	9,3	57	
XP 112 CL	5	89	87	9,2	65	
CT23034H	6	95	89	12,6	61	
Prime CL	4	91	78	8,1	59	
IRGA 424	5	88	94	9,9	61	
CT23020H	5	97	89	17,7	61	
CT23057H	6	101	98	19,7	55	
IRGA 426	2	90	89	10,2	60	
IRGA 417	3	90	82	6,6	61	
Média	5	93	89	11,6	60	

¹Vigor inicial avaliado com escala do IRRI, 1996 (1=Alto vigor; 9=Baixo vigor); ²Média=média dos cinco locais; CCH=Cachoirinha; CS=Cachoeira DEF=Dias de emergência à 80% do florescimento.

Os híbridos apresentaram baixo vigor inicial das plântulas, inferior ao apresentado pelas cultivares, principalmente para a cultivar IRGA 426, cuja nota foi 2 (Tabela 2).

De modo geral, os híbridos apresentaram uma estatura de plantas maior que as cultivares, sendo que o híbrido CT23057H obteve média de 101 cm, enquanto que a cultivar IRGA 424 foi de 88 cm (Tabela 2). O ciclo mais longo foi observado para o híbrido CT23057H (98 DEF), classificado como muito tardio para nossas condições.

Em Cachoeira do Sul foi realizada avaliação da esterilidade de espiguetas, onde os híbridos promissores CT23020H e CT23057H apresentaram valores maiores de 17,7 e 19,7%, respectivamente. Porém estes observações estão dentro dos valores aceitáveis. Os demais híbridos apresentam baixa esterilidade de espiguetas destacando-se o QM 1010 CL, XP 112 CL e Prime CL com média de 9,3, 9,2 e 8,1%, respectivamente (Tabela 2). Para o rendimento de inteiros, os híbridos obtiveram valores aceitáveis, ficando próximos dos valores das cultivares. Entre os híbridos destacam-se os promissores XP 111 CL, XP 112 CL, CT23034H e CT23020H com média de 61, 65 e 61 e 61, respectivamente (Tabela 2).

Em relação ao índice de centro branco (CB) os híbridos apresentaram valores acima dos observados para a cultivar IRGA 417 (melhor testemunha para qualidade dos grãos). Entre os híbridos, Prime CL, CT23034H e CT23020H foram os que mostraram menores índices de centro branco com média variando 0,3 a 0,9. A maioria dos híbridos apresentaram segregação para a temperatura de gelatinização nos dois ambientes onde foram avaliados. Isto indica que os grãos não cozinham uniformemente durante a cocção (Tabela 3). Apenas os híbridos QM 1010 CL, CT23034H, CT23020H e CT23057H estão dentro dos padrões aceitáveis este caráter (Tabela 3). Por outro lado, o teor de amilose foi alto ou intermediário, indicando que os grãos se apresentam soltos e macios após a cocção. O híbrido que mais se destacou no conjunto das características para qualidade de grãos foi o híbrido CT23034H, similar aos da cultivar IRGA 417 (Tabela 3).

Tabela 3. Características da qualidade de grãos e reação à brusone de alguns híbridos em diferentes locais do Rio Grande do Sul, safra 2012/13. IRGA/EEA, Cachoeirinha, 2013.

	Índice de centro branco ¹		Temperatura de gelatinização ²		Teor de amilose (%)		Reação à brusone	
Genótipo							Na	Na
•	cs	URU	CAM	ССН	CAM	ССН	folha ³	panícula⁴
QM 1010	1,2	1,7	B/M	BM	25	28	3	2
XP 111 CL	1,1	0,6	B/A	BM	25	27	3	3
QM 1010 CL	0,6	1,3	В	M	28	27	3	4
XP 112 CL	0,9	0,8	Α	M	28	27	3	3
CT23034H	0,9	0,8	В	В	27	30	3	3
Prime CL	0,8	0,5	A/B	BM	25	28	7	9
IRGA 424	0,7	1,4	В	В	28	29	2	1
CT23020H	0,5	0,3	В	В	25	30	9	М
CT23057H	1,3	1,7	BM	В	25	28	3	Т
IRGA 426	0,5	0,2	В	В	28	29	3	2
IRGA 417	0,2	0,0	В	В	26	33	8	9
Média	0,8	0,8	A/M/B	B/M	26	29	4	4

¹Índice de centro branco (Notas de 0 a 5, sendo 0 = grãos translúcidos e 5=grãos opacos; CIAT, 1989); CS=Cachoeira do Sul; URU=Uruguaiana CAM=Camaquá; CCH=Cachoeirinha. ¹Temperatura de gelatinização (Conceitos: A=alta, M=média, B=baixa; CIAT, 1989); ¹Reação à brusone na folha (0 a 3 = resistente, 4 a 5 moderadamente resistente, 6 a 7 moderadamente suscetivel, 8 a 9 = suscetivel; IRRI, 1996); ¹Reação à brusone na panícula (0 a 1 = resistente, 3 = moderadamente resistente, 5 a 7 = moderadamente suscetivel, 9 = suscetivel, M=plantas mortas, T=plantas tardías; IRRI, 1996)

CONCLUSÃO

A heterose padrão na média dos locais foi de 22,5%, porém pode variar de acordo com os locais. Os híbridos se mostram mais produtivos que as cultivares, mas ainda apresentam menor qualidade de grãos que essas. Neste contexto, o híbrido promissor CT23034H destacou-se com uma elevada qualidade de grãos, demonstrando avanço nestas características.

REFERÊNCIAS BIBLIOGRÁFICAS

CIAT. Evaluación de la culinária y molineria del arroz. Calli: Centro International de Agricultura Tropical, 1989. 73 p.

IRRI. **Standard evaluation system for rice.** Manila: International Rice Reserch Istitute, 1996. 52 p.

SAS Institute. SAS software, versão 8.0. Cary, 2000.