EMISSÃO DE CH4 E N2O NO CULTIVO DE ARROZ IRRIGADO INFLUENCIADA POR DIFERENTES APORTES DE RESÍDUO DE **AZEVÉM**

Carla Machado da Rosa¹; Tiago Zschornack²; Cimélio Bayer³; Juliana Gomes⁴: Paulo Régis Ferreira da Silva5: Vladirene Macedo Vieira6

Palavras-chave: alagamento, aquecimento global, Lolium multiflorum, gases de efeito estufa, várzea,

INTRODUÇÃO

O cultivo do arroz irrigado tem grande importância econômica, principalmente no Sul do Brasil, sendo o Rio Grande do Sul o maior produtor nacional com mais de 50% da produção, em uma área cultivada superior a um milhão de hectares/ano.

No Brasil, a atividade agrícola é uma das principais responsáveis pelas emissões de gases de efeito estufa (GEE), contribuindo com cerca de 75% das emissões de CO₂, 94% das emissões de N₂O e 91% das emissões de CH₄ (EMBRAPA & CNPMA, 2006). Dentre todas as atividades agrícolas envolvidas na emissão de GEE, o cultivo de arroz irrigado responde por aproximadamente 15-20% do CH₄ emitido antropogenicamente, cuja produção é relacionada à decomposição anaeróbica de materiais orgânicos. Com relação às emissões de N₂O, em sistemas de cultivo com arroz irrigado, poucas informações são encontradas na literatura e estas estão relacionadas à adubação nitrogenada e drenagem do solo.

A adição ou manutenção de resíduos no solo podem exercer efeitos distintos sobre as emissões de CH₄ e N₂O, a quantidade e qualidade do material orgânico são relevantes quando se verificam diferenças nas taxas de emissão destes gases. O aporte de resíduos fornece carbono ao sistema e favorece o processo de redução do solo, aumentando a produção de CH₄. Por outro lado, a aplicação de resíduos orgânicos no solo pode ser uma prática capaz de inibir as emissões de N₂O em solos cultivados com arroz. Resíduos com alta relação C:N podem estimular a imobilização microbiana no N, reduzindo a sua disponibilidade para os processos envolvidos na produção de N2O.

Neste contexto, o presente trabalho teve como objetivo avaliar o efeito de diferentes quantidades de palha de azevém sobre as emissões de CH₄ e N₂O em um Gleissolo cultivado com arroz irrigado e suas contribuições para o potencial de aquecimento global parcial.

MATERIAL E MÉTODOS

O experimento foi conduzido na Estação Experimental do Arroz do Instituto Rio Grandense do Arroz, localizado no município de Cachoeirinha - RS, durante a safra 2009/2010. O clima da região é do tipo subtropical úmido (Cfa) conforme classificação de Köppen. A temperatura e precipitação pluvial média anual são de 20 °C e 1425 mm, respectivamente, e a disponibilidade de radiação solar máxima é de 502 cal cm⁻² dia⁻¹ no mês de dezembro. O solo da área experimental é classificado como um Gleissolo Háplico Ta Distrófico típico (STRECK et al., 2008).

Os tratamentos constaram de duas quantidades de resíduo de azevém, 2,9 e 4,3

591

Pós doutoranda do Departamento de Solos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 7712, 91540-000, Porto Alegre, RS. E-mail: carlamrosa@yahoo.com.br.

Doutorando no Programa de Pós Graduação em Ciência do Solo da UFRGS. E-mail: tivizs@yahoo.com.br.

³ Professor do Departamento de Solos, UFRGS. Bolsista de Produtividade do CNPq. E-mail: cimelio.bayer@ufrgs.br.

⁴ Doutora em Ciência do Solo. Universodade Federal do Rio Grande do Sul. E-mail: gomes.juli@gmail.com.

⁵ Professor Colaborador Convidado do Departamento de Plantas de Lavoura, Faculdade de Agronomia, UFRGS. Bolsista de Produtividade do CNPq. E-mail: paulo.silva@ufrgs.br

Doutoranda no Programa de Pós Graduação em Fitotecnia, UFRGS. E-mail: vladirene@gmail.com.

Mg ha $^{-1}$, como cobertura de solo no inverno e de um tratamento com a área em pousio (solo sem azevém). O delineamento experimental foi de blocos casualizados, com três repetições. O azevém foi semeado em maio de 2009 (25 kg ha $^{-1}$), sem aplicação de adubação e para a obtenção dos diferentes rendimentos foi aplicado N em cobertura nas doses de 25 e 50 kg ha $^{-1}$, assim obtiveram-se os rendimentos de 2,9 e 4,3 t ha $^{-1}$ de massa seca de resíduo, respectivamente. A área foi dessecada um dia após a semeadura que ocorreu no dia 19 de outubro de 2009, num sistema de semeadura direta (cv IRGA 424, 100 kg ha $^{-1}$). Na adubação de base foram aplicados 50 kg ha $^{-1}$ de P_2O_5 , 100 kg ha $^{-1}$ de N_2O_5 0 e 150 kg N ha $^{-1}$ 0 (20 kg na semeadura, 86 kg no estádio N_3 0 e 44 no estádio N_3 0. A emergência das plantas de arroz cocrreu no dia 01 de novembro de 2009 e as parcelas foram inundadas 29 dias após a semeadura, quando as plantas de arroz estavam no estádio N_3 0, mantendo-se uma lâmina de água entre 5 e 10 cm de altura. A colheita do arroz foi realizada em 04 de março de 2010 e o rendimento de grãos foi obtido pela extrapolação da produção obtida na área útil da subparcela para um hectare, corrigindo-se a umidade para 13%.

A amostragem do ar foi realizada utilizando o método da câmara estática fechada, adaptado de Mosier (1989), utilizando-se câmaras de alumínio dispostas sobre bases fixadas no solo (64 x 64 cm). As coletas foram feitas semanalmente, de novembro a março. As avaliações iniciaram após a entrada da água de irrigação, tendo-se duas bases de alumínio em uma repetição de cada tratamento.

Após a coleta, as seringas foram mantidas sob baixa temperatura e transportadas ao Laboratório de Biogeoquímica Ambiental da UFRGS (Porto Alegre, RS), as concentrações de CH $_4$ e de N $_2$ O foram determinadas em cromatógrafo Shimadzu 2014 (modelo "Greenhouse"), equipado com coluna empacotada (70 °C), detectores FID (250 °C) e ECD (325 °C) e N $_2$ como gás de arraste (26 mL min 1). Os fluxos de CH $_4$ e N $_2$ O foram estimados utilizando-se a equação:

$$f = \frac{\Delta Q}{\Delta t} \frac{PV}{RT} \frac{M}{A}$$

onde, f é o fluxo de óxido nitroso ou metano (μ g de N_2 O ou CH_4 m^{-2} h^{-1}), Q é a quantidade do gás (μ mol mol $^{-1}$) na câmara no momento da coleta, P é a pressão atmosférica (atm) no interior da câmara - assumida como 1 atm, V é o volume da câmara (L), R é a constante dos gases ideais (0,08205 atm. L mol $^{-1}$ K^{-1}), T é a temperatura dentro da câmara no momento da coleta (K), M é a massa molar do gás (μ g mol $^{-1}$) e A é a área da base da câmara (m^2).

A variação da concentração do gás no tempo foi obtida pelo coeficiente angular da equação da reta ajustada. A emissão total de CH_4 e N_2O do período avaliado foi calculada integrando-se a área sob a curva, a qual foi estabelecida pela interpolação dos valores diários de emissão (Gomes et al, 2009). Também foi calculado o potencial de aquecimento global parcial (PAG_{parcial}) parcial utilizando-se as emissões totais de CH_4 e de N_2O . Nesse caso, os dados de emissão de ambos os gases foram convertidos a CO_2 equivalente (kg CO_2 equiv. ha o utilizando-se os valores de PAG de 25 e 298 para CH_4 e N_2O , respectivamente, considerando-se um tempo de permanência na atmosfera de 100 anos (Forster et al., 2007).

RESULTADOS E DISCUSSÃO

As emissões totais de CH₄ variaram de 509,44 à 532,52 kg CH₄ ha⁻¹ e a maior emissão foi encontrada no sistema com aporte de 2,9 Mg ha⁻¹ de resíduo de azevém, seguido do sistema sem azevém (Figura 1a). O resultado não corrobora com os encontrados na literatura onde o aumento na quantidade de resíduo vegetal, promove um aumento nas emissões de CH₄. Outros autores verificaram que o maior aporte de resíduos vegetais aumenta a produção e emissão de CH₄ do solo após a inundação (Nacer at al., 2007). O acréscimo de C ao sistema estimula a atividade microbiana, promovendo não somente a liberação de substrato para a metanogênese (compostos orgânicos lábeis) como também acelerando o processo de redução do solo, com diminuição do potencial redox, condição essencial para que haja produção de CH₄ (Dalal et al., 2008).

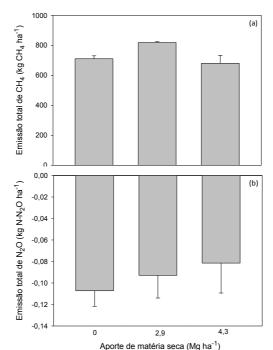


Figura 1. Emissão total de CH₄ (a) e de N₂O (b) em dois solos cultivados com arroz irrigado sob diferentes aportes de matéria seca de azevém. Barras verticais indicam o desvio padrão da média.

Por outro lado, houve absorção de N_2O , que decresceu com o aumento nas quantidades de resíduo (Figura 1b). Resíduos com alta relação C:N, como o do azevém, implicam em maior potencial de desnitrificação devido a imobilização no N mineral pelos microrganismos, reduzindo assim, as emissões de N_2O . Essa imobilização do N mineral também pode favorecer a absorção do N_2O da atmosfera, já que parte do N do solo não está disponível.

A quantidade e a qualidade do material orgânico tem grande importância quando se verificam diferenças nas taxas de emissão destes gases. Enquanto para o CH4, a quantidade de resíduo comanda as emissões, a qualidade do resíduo é que governa as emissões de N2O. Também a condição de alagamento, pelo cultivo do arroz irrigado, é responsável por manter o solo num estado de redução (Eh de aproximadamente +180mV) , o que segundo Reddy e DeLaune (2008), Eh entre +300 e -100 mV é crítico para a produção de N2O.

A partir dos fluxos totais de CH₄ e N₂O foi estimada a contribuição destes gases para o potencial de aquecimento global parcial (PAG parcial), expresso em quantidade de CO₂ equivalente ha⁻¹ (Tabela 1). O CH₄ foi o responsável pelo PAG, visto que houve absorção de N₂O ao invés de emissão. Dos sistemas com aportes diferenciados de resíduo de azevém, o tratamento com a maior quantidade de resíduo (4,3 Mg ha⁻¹) apresentou um PAG parcial 17% menor em relação ao tratamento com 2,9 Mg ha⁻¹ de resíduos.

Estes resultados mostram que o CH4 tem maior participação no PAG parcial em

solos cultivados com arroz irrigado, podendo ser superior às emissões de CO₂ (Hadi et al., 2010).

Tabela 1. Potencial de aquecimento global parcial (PAG_{parcial}), rendimento de arroz e relação PAG_{parcial}/ rendimento de arroz em um Gleissolo cultivado com arroz irrigado e com diferentes quantidades de palha de azevém

Palha de Azevém	PAG parcial		Rendimento	PAG/Rendimento
	CH₄	N₂O		
Mg ha ⁻¹	Kg CO ₂ equivalente		Kg ha⁻¹	Kg CO2 eq. Kg arroz ⁻¹
0	23608	-100	10128	2,32
2,9	27213	-87	10263	2,64
4,3	22585	-76	9892	2,28

CONCLUSÃO

O aporte de resíduos por meio do cultivo de coberturas de inverno em solos de várzea pode potencializar as emissões de CH₄, no entanto, a utilização desta prática não deve ser descriminada pois traz benefícios ao sistema agrícola, principalmente do ponto de vista de qualidade do solo.

AGRADECIMENTOS

Ao Instituto Rio Grandese do Arroz (IRGA), pela concessão da área experimental. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela concessão da bolsa de pós doutorado. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de doutorado.

REFERÊNCIAS BIBLIOGRÁFICAS

DALAL, R. C.; ALLEN, D. E.; LIVESLEY, S. J.; RICHARDS, G. Magnitude and biophysical regulators of methane emission and consumption int the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil, v.309, p.43-76, 2008.

EMBRAPA & CNPMA. Primeiro inventário brasileiro de emissões antrópicas de gases de efeito estufa: emissões de óxido nitroso proveniente de solos agrícolas. Ministério da Ciência e Tecnologia, Brasília, 2006b. 129p. Disponível em: http://www.mct.gov.br/upd_blob/0008/8809.pdf. Acesso em 01/08/2010

FORSTER, P.; RAMASWAMY, V.; ARTAXO, P.; BERNTSEN, T.; BETTS, R.; FAHEY, D.W.; HAYWOOD, J.; LEAN, J.; LOWE, D.C.; MYHRE, G.; NGANGA, J.; PRINN, R.; RAGA, G.; SCHULZ, M. & van DORLAND, R. Changes in atmospheric constituents and in radiative forcing. In: SOLOMON, D.; QIN, D.; MANNING, M.; CHEN, Z.; MARQUIS, M.; AVERYT, K.B.; TIGNOR, M. & MILLER H. L. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdon & New York: Cambridge University Press, 2007. p.129-234.

GOMES, J.; BAYER, C.; COSTA, F.S.; PICCOLO, M.C.; ZANATTA, J.A.; VIEIRA, F.C.B. & SIX, J. Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil Tillage Research, 106:36-44, 2009.

HADI A.; INUBUSHI K.; YAGI K. Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonésia. Paddy Water Environ. Published online: 15 July, 2010. http://www.springerlink.com/content/n5l7x5421t577r31.

MOSIER, A.R. Chamber and isotope techniques. In. ANDREAE, M.O.; SCHIMEL, D.S. (Eds.). Exchange of traces gases between terrestrial ecosystems and the atmosphere: report of the Dahlem Workshop. Berlin: Wiley, 1989. p.175-187.

NASER, H. M.; NAGATA, O.; TAMURA, S.; HATANO, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition, v.53. n.1. p.95-101. 2007.

REDDY, K. R. & DeLAUNE, R.D. Biogeochemistry of wetlands: science and applications. Florida, CRC Press, 2008, 800p.

STRECK, E,V.; KAMPF, N.; DALMOLIN, R.C.D. et al. Solos do Rio Grande do Sul. Porto Alegre: EMATER-RS, 2008. 222p.