EFEITOS DO PROCESSO DE SECAGEM NAS PROPRIDADES FISICAS E DE QUALIDADE DOS GRAOS DE ARROZ NO DECORRER DO ARMAZENAMENTO

Rafael de Almeida Schiavon¹; Adriano Hirsch Ramos²; Cristiano Dietrich Ferreira³; Daniel Rutz⁴; Ismael Aldrighi Bertinetti;⁵; Moacir Cardoso Elias⁶

Palavras-chave: arroz, secagem, qualidade,

INTRODUCÃO

O arroz é considerado pela FAO (Food and Agriculture Organization of the United Nations) como o alimento mais importante para a segurança alimentar do mundo. Além de fornecer um excelente balanceamento nutricional é uma cultura bastante rústica, o que a faz também ser considerada a espécie de maior potencial de aumento na produção para combate a fome no mundo (GOMES et al, 2004).

A produção do arroz ocorre em todos os continentes estando na Ásia aproximadamente 90% da produção mundial. Na América Latina, o Brasil se destaca como o maior produtor (FAO 2009).

No arroz, por ter produção sazonal, é utilizada a secagem como método de conservação. Entretanto, cada vez mais a produtividade vem crescendo, em conseqüência do grande incremento de tecnologias na área de produção, mas este incremento não é acompanhado na pós-colheita, o que causa gargalos ou pontos de estrangulamento no fluxo das etapas de recepção e secagem dos grãos. Isso, além de reduzir a cadência operacional, provoca redução na qualidade dos grãos, pois são elevados os graus de umidade e impurezas que eles contêm quando da colheita mecanizada, que predomina no país.

O rendimento de grãos inteiros e quebrados é o principal parâmetro considerado na avaliação comercial do arroz para a determinação da qualidade e do preço do produto. Dentre outros fatores, os métodos e as condições de manejo da secagem, aos quais o produto é submetido, afetam diretamente o beneficiamento, interferindo, principalmente, na porcentagem de grãos inteiros obtidos (CANEPELLE et al.,1992).

A temperatura dos grãos armazenados é um bom índice do seu estado de conservação (PUZZI, 2000). A principal fonte de deterioração é o aquecimento espontâneo da massa de grãos. Em países da Europa Central e da América do Norte, onde predomina clima temperado, são mais raros os problemas com armazenamento nos meses mais frios do ano, do que naqueles meses mais quentes, que sucedem à colheita (MAIER, 1995).

Em climas quentes recomenda-se aeração com ar natural nas regiões mais elevadas, do contrário, aeração com ar frio artificial. Climas temperados e moderados são os mais apropriados para ventilação usando ar ambiente. A linha de 30 o latitude (norte e sul do equador) dá forma aos limites ásperos para aeração (NAVARRO e NOYES, 2002).

Devido á estrutura interna do grão, sua superfície, suas propriedades físicas como a baixa condutividade térmica, os grãos oferecem as melhores condições para serem resfriados e assim permanecerem por longo período (ELIAS, 2008). O resfriamento dos grãos reduz as perdas fisiológicas pela respiração intrínseca e mantém sua qualidade, oferecendo proteção contra desenvolvimento insetos (SANTOS, 2002, LAZARI et. al.,2006).

Objetivando ampliar o acervo de informações técnicas e científicas sobre operações

³ Acadêmico do curso de Agronomia, Universidade Federal de Pelotas, dietrich_ferreira10@yahoo.com.br

¹ Eng. Agronomo Msc, Doutorando em Ciência e Tecnologia Agroindustrial – FAEM – UFPel, Campus Universitário Capão do Leão, s/n, Caixa Postal 354, Capão do Leão – RS, CEP: 96010-900, Fone: (53) 3275 7258 – Ramal: 205, raschiavon@gmail.com

² Acadêmico do curso de Agronomia. Universidade Federal de Pelotas

⁴ Eng. Agronomo, Mestrando em Ciência e Tecnologia Agroindustrial – FAEM – UFPel, danielwherutz@hotmail.com

⁵ Acadêmico do curso de Agronomia, Universidade Federal de Pelotas

⁶ Eng. Agronomo Prof. DCTA-FAEM-UFPel, eliasmc@ufpel.edu.br

de pós-colheita de arroz, e minimizar limitações operacionais nas etapas de recepção e secagem, visa-se com este trabalho estudar métodos de secagens que possam diminuir esta limitação operacional, reduzindo perdas de qualidade dos grãos causadas por esta limitação, sem causar danos nos grãos

MATERIAL E MÉTODOS

Nos métodos de secagem intermite clássica e intermitente escalonada foram utilizadas temperaturas crescentes onde na primeira hora o termostato foi regulado para o ar atingir uma temperatura máxima de 70+5°C, na segunda para atingir 90+5°C e na terceira para atingir 100+5°C, permanecendo nesta condição até os grãos reduzirem seu grau de umidade para 13% para a secagem intermitente clássica e a cerca de 15% para a secagem intermitente em regime escalonado.

Os secados pelo método intermitente clássico foram para o armazenamento definitivo, enquanto os secados pelo sistema escalonado foram armazenados por aproximadamente 30 dias e posteriormente os mesmos retornaram ao secador para complemento da secagem. Logo após o término de cada operação de secagem, os grãos foram misturados para que ocorresse a uniformização da umidade. Em seguida, as amostras foram divididas em partes iguais e então armazenadas durante doze meses em sacos de polipropileno de 50Kg cada, em condições ambientais controladas de temperatura reduzida de aproximadamente 17±1°C.

Massa específica e o peso de mil grão foram realizados de acordo com a metodologia descrita por Regras de Análises de Sementes (BRASIL, 1992).

Foram realizadas as operações de descascamento, polimento, separação de quebrados e separação de defeitos, conforme as Normas de Identidade, Qualidade, Embalagem e Apresentação do Arroz (BRASIL, 2009).

RESULTADOS E DISCUSSÃO

Na Tabela 1 são apresentados os valores do peso de mil grãos e de peso volumétrico dos grãos secados pelos métodos intermitente clássica e intermitente escalonada, armazenados por doze meses e beneficiados pelo processo convencional de arroz branco.

Tabela 1 – Peso de mil grãos (g) e peso volumétrico (g) dos grãos de arroz natural em casca, secados por dois métodos e armazenados por doze meses sob resfriamento.

Métodos de secagem -	Peso de mil grãos		Peso volumétrico	
	1°	12°	1°	12°
Intermitente clássica	a 22,71 A	a 22,51 A	a 553,1 A	a 478,75 A
Intermitente escalonada	a 22,84 A	a 22,48 A	a 547,6 A	a 473,22 A

Para o mesmo parâmetro, as médias aritméticas simples, de três repetições, seguidas por letras minúsculas iguais, na mesma coluna, e letras maiúsculas iguais, na mesma linha, não diferem entre si, pelo teste de Tukey a 5% de significância;

Conforme pode ser observado nos dados apresentados na Tabela 1 não houve diferenças nos pesos volumétricos e nos pesos de mil grãos em função do método de secagem e nem em função do tempo de armazenamento. Esse comportamento é decorrente do resfriamento, que reduziu o metabolismo dos grãos, diminuindo as perdas de massa que a literatura relata (FAGUNDES et. al., 2005).

Os valores do peso de mil grãos e de peso volumétrico na Tabela 1 não apresentaram diferença estatística para arroz branco. Este fato mostra que os métodos de secagem não ocasionam diferentes danos latentes nos grãos e o armazenamento em

temperatura reduzida mantém a qualidade dos grãos. Os resultados são compatíveis com os relatados por Corrêa (2007)

Na Tabela 2 e 3 são apresentados, respectivamente, os percentuais do total de grãos inteiros, grãos com defeitos metabólicos e com defeitos não metabólicos, em arroz secado pelos métodos intermitente clássica e intermitente escalonada, os quais foram armazenados por doze meses sob resfriamento e posteriormente beneficiados pelos processos industriais de arroz branco.

Tabela 2 – Rendimento de grãos inteiros (%) em arroz, secado por dois métodos, armazenados por doze meses sob resfriamento e beneficiados pelo processo convencional de arroz branco.

Métodos de secagem	Meses de armazenamento			
	1°	12°		
Intermitente clássica	a 53,3 B	a 55,5 A		
Intermitente escalonada	a 53,2 B	a 55,6 A		

Médias aritméticas simples, de três repetições, seguidas por letras minúsculas iguais, na mesma coluna, e letras maiúsculas iguais, na mesma linha, não diferem entre si, pelo teste de Tukey a 5% de significância;

Tabela 3 – Defeitos não metabólicos (%) e defeitos metabólicos (%) de arroz branco polido, secados pelos dois métodos de secagem no período de armazenamento

Métodos de secagem	Defeitos não metabólicos		Defeitos metabólicos	
	1°	12°	1°	12°
Intermitente clássica	a 0,51 A	a 0,50 A	a 0,18 B	a 0,28 A
Intermitente escalonada	a 0,51 A	a 0,50 A	a 0,17 B	a 0,29 A

Para o mesmo parâmetro as médias aritméticas simples, de três repetições, seguidas por letras minúsculas iguais, na mesma coluna, e letras maiúsculas iguais, na mesma linha, não diferem entre si, pelo teste de Tukey a 5% de significância;

Na Tabela 2 pode ser observado que não há diferença significativa entre os dois métodos de secagem, havendo diferença somente entre os períodos de armazenamento, este fato é devido ao melhor rearranjo das moléculas dos grãos e a manutenção da integridade físicas dos grãos pelo método de armazenamento empregado. Esse comportamento difere dos relatados por Iguaz e Virseda (2006), sendo o resfriamento o ambiente de armazenagem, responsável pela manutenção da integridade física dos grãos nos doze meses estudados.

Observa-se nos dados da Tabela 3 que os defeitos não metabólicos não são influenciados pelo método de secagem e nem pelo tempo de armazenamento. Isso ocorre por eles serem de característica varietal, de clima e do manejo utilizado na lavoura, o que está de acordo com relatos da literatura (ELIAS, 2007).

Na Tabela 3 pode ser observado que os aumentos nos defeitos metabólicos ocorridos, ainda que estatisticamente significativos, são percentualmente pequenos sendo as baixas temperaturas no armazenamento responsáveis pelos baixos níveis de metabolismo ocorridos.

CONCLUSÃO

O método de secagem intermitente em regime escalonado pode ser utilizado, no intuito de diminuir as limitações operacionais, sem que ocorra diminuição na qualidade dos mesmos e o armazenamento em ambiente com temperaturas reduzidas preserva a qualidade do arroz por pelo menos um ano, para os parametros estudados no presente trabalho.

AGRADECIMENTOS

CNPq, CAPES, SCT-RS (Pólos Tecnológicos) e ZACCARIA.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL, Ministério da Agricultura e Reforma Agrária. **Regras para análise de sementes**. Brasília: DNDV/CLAV, 1992. 365p.

BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. **Norma de classificação, embalagem e marcação do arroz. Instrução normativa Nº 6**, Diário Oficial da União, Seção 1, Página 3. 2009.

CANEPPELE, C.; HARA, C. C. T.; CAMPELO JUNIOR, Jose Holanda . Simulacao De Secagem De Arroz (Orysa Sativa L.) Em Secadores Por Conveccao Natural. **Rev. Brasileira De Armazenamento**, V. 17, N. 1, P. 43-45, 1992.

CORRÊA, P.C.; DA SILVA, F. S.; JAREN, C.; AFONSO JÚNIOR, P.C.; ARANA, I.. Physical and mechanical properties in rice processing. **Journal of Food Engineering**. V. 79 p. 137–142, 2007.

ELIAS, M. C. **Pós-colheita de arroz: secagem, armazenamento e qualidade**. 1. ed. Pelotas: Editora e Gráfica Universitária UFPEL, 2007. v. 1. 424 p.

ELIAS, M.C. Manejo tecnológico da secagem e do armazenamento de grãos. Pelotas: Ed. Santa Cruz, 2008. 367p.

FAGUNDES, C. A. A.; ELIAS, M. C.; BARBOSA, F. F.; Desempenho industrial de arroz secado com ar aquecido por queima de lenha e glp. **Revista Brasileira de Armazenamento**, v. 30, p. 8-15, 2005.

FAO – Food and Agriculture Organization of the United Nations. **International year of rice. Rice is life**. Disponível em: http://www.rice2004.org, Acesso em: Abril de 2009.

IGUAZ, A.; VÍRSEDA, P. Moisture desorption isotherms of rough rice at high temperatures. **Journal of Food Engineering**, Article in press, 2006.

LAZZARI, S.M.N.; KARKLE, A.F. e LAZZARI, F.A.. Resfriamento artificial para o controle de Coleoptera em arroz armazenado em silo metálico. **Rev. Bras. entomol**. 2006, vol.50, n.2, pp. 293-296.

MAIER, D. E. Chilled Air Grain Concitioning and Pest Managemente. Association of Operative Millers – Bulletin, Salt Lake Cite, Utah, p. 6655-6663, dec. 1995.

NAVARRO, S.; NOYES, R. The mechanics and physics of modern grain aeration management. New York: crc press, 2002. 647 p.

PUZZI, D. **Abastecimento e armazenagem de grãos**. Campinas: Instituto Campineiro de. Ensino Agrícola, 2000. 666p.

SANTOS, Geverson Lessa. **Manejo térmico no tempo de secagem, na eficiência energética e nas características industriais e de consumo do arroz**. 2004. 114f. Dissertação (Mestrado em Ciência e Tecnologia Agroindustrial) - Faculdade de Agronomia "Eliseu Maciel", Universidade Federal de Pelotas, Pelotas.