AVALIAÇÃO DA CONCENTRAÇÃO DE SELÊNIO, ZINCO, COBRE, ARSÊNIO, CÁDMIO E CHUMBO EM VARIEDADE DE ARROZES COMUMENTE CULTIVADOS NO BRASIL

<u>Fabiana R. Segura</u>¹; Fabio Silva² Ana Carolina Paulelli³; Júlio Centeno da Silva⁴; Daniel Fernandez Franco⁴; Ariano Martins de Magalhães Júnior⁴; Bruno L. Batista¹

Palavras-chave: Elementos essenciais, elementos não essenciais, arroz, ICP-MS.

INTRODUÇÃO

O Arroz (*Oryza sativa* L.), segundo cereal mais produzido no mundo (1), cujo consumo no Brasil é estimado em mais de 50 kg de arroz/habitante/ano.(2), é considerado um importante alimento para a constituição de dietas saudáveis por ser fonte de carboidratos e por sua qualidade proteica, além de ser uma possível fonte de elementos essenciais como ferro e zinco (3). Entretanto, sabe-se que os alimentos muitas vezes podem ser fontes de exposição a elementos não essenciais (4)(5) como arsênio, cádmio, chumbo, o que representa risco à população. Esse risco para a população tem sido alvo de intensas discussões e forças-tarefa organizadas pela *Food Agriculture Organization* ligada a Organização Mundial da Saúde (FAO/WHO), que visam o estabelecimento de limites máximos e estratégias de gerenciamento (6)(7).

A concentração de elementos essenciais (EE) e não essenciais (ENE) no arroz pode variar conforme o local de cultivo, cultivar e processos de beneficiamento dos grãos. Portanto, para o gerenciamento dos riscos de exposição a ENEs, ou mesmo para o desenvolvimento de tecnologias de cultivo que possibilitem enriquecimento nutricional do arroz, são fundamentais determinações das concentrações de EEs e ENEs conforme a variedade e origem dos grãos.

No Brasil, Batista(2010) estudou a concentração de 13 elementos essenciais e não essenciais em amostras de arrozes provenientes de diversas regiões do Brasil. Neste estudo foram encontrados valores variando entre 2,4-4,2 μg.g⁻¹ para cobre (Cu), 15,3-44,2 μg.g⁻¹ para zinco (Zn), 32,1-44,9 ng.g⁻¹ para selênio (Se), 98,4-154,0 ng.g⁻¹ para arsênio (As) e 11,1-17,5 ng.g⁻¹ para cádmio (Cd).

O presente trabalho tem por objetivo realizar o estudo da variação das concentrações de As, Cd, Pb, Zn, Se e Cu em amostras de arroz cegas coletadas no Município de Pelotas e imediações utilizando a Espectrometria de Massas com Plasma Indutivamente Acoplado (ICP-MS).

MATERIAL E MÉTODOS

Foram utilizadas soluções padrão multielementares para curvas de calibração (Agilent, USA). Água ultrapura (Milli-Q, Merck, USA) e ácido nítrico destilado (Savillex DS-100, USA) foram utilizados no preparo de soluções e amostras.

As amostras (n=60), provindas dos municípios de Pelotas, Santa Vitória do Palmar, Arroio Grande e Itaqui) foram coletadas e depois selecionadas aleatoriamente do banco de amostras da Embrapa Clima Temperado (Pelotas, RS, Brasil). Estas amostras foram então descascadas, moídas (IKA A1, Alemanha) e tamizadas (<250 μm).

As amostras de arroz integral foram então pesadas (150 mg, triplicata) e pré-digeridas com 1 ml de ácido nítrico subdestilado durante 48 horas. Após este período as amostras

3 Doutoranda, FCF-RP - Universidade de São Paulo

¹ Doutoranda, Universidade Federal do ABC, eng.fabianasegura@gmail.com.

² Dr., Agilent Technologies.

⁴ Dr. Embrapa Clima Temperado

foram aquecidas em bloco digestor (Analab EasyDigest, França) por 4 horas, a 90°C. Então as amostras foram avolumadas com água ultrapura para 14 ml e analisadas por ICP-MS (Agilent 7700, USA).

RESULTADOS E DISCUSSÃO

Na Tabela 1 encontra-se a descrição das amostras (município, cultivar e número de amostras) e concentrações do ENEs.

Tabela 1 – Concentração de elementos não essenciais (ng.g⁻¹) em arrozes comumente cultivados no Brasil. N: número de amostras.

•			As	Pb	Cd
Municipio	Cultivar	N	média±desvio padrão (mínimo-máximo)		
Arroio Grande	Α	15	186±13,2 (164-196)	28,7±11,5 (15,6-54)	12,6±4,6 (8,6-24,7)
Itaquí	Α	4	94±6 (89-103)	27,8±4,6 (21,3-31,4)	7,5±1,2 (6,6-9,2)
Pelotas	В	5	187±4,1 (182-191)	19,6±12,6 (8,9-34,2)	5±3,1 (3,2-9,7)
	Α	23	61±63 (14,9-176)	37,2±48,5 (0,4-168)	9,8±3,1 (4,1-18,8)
Santa Vitória do Palmar	В	13	168±11,6 (154-196)	68±74 (24,3-243)	11,7±2,2 (8,1-14,9)
Geral	-	60	123±6,7 (14,9-196)	41±63 (0,39-243)	10,3±1,82 (3,2-24,7)

Para o As, 85% das amostras apresentaram concentrações menores que 200 ng.g⁻¹, valor limite de As inorgânico em arroz polido recomendado pela FAO/WHO (6). Em 65% das amostras da variedade A de Pelotas foram observadas concentrações consideradas baixíssimas (<50 ng.g⁻¹), geralmente encontradas em arrozes de cultivo do tipo sequeiro. Em 97% das amostras a concentração de Pb ficou abaixo do valor recomendado pela FAO(6) para cereais, isto é, < 200 ng.g⁻¹. Novamente destacam-se as amostras do município de Pelotas (61%) e de Arroio Grande (38%) da variedade A com valores de Pb abaixo de 30 ng.g⁻¹. Isso demonstra a influência do local de cultivo para a cultivar uma vez que foram determinadas concentrações menores de As na variedade A em Pelotas quando comparada a Arroio Grande. Porém, para o Pb observa-se o inverso. O Cd é um importante elemento para o arroz uma vez que, como para o As, a planta tende a acumular este elemento no grão. Para Cd todas as amostras foram menores que o limite máximo recomendado pela FAO(7) para cereais, isto é, abaixo de 200 ng.g⁻¹.

Na Tabela 2, foram organizados os dados de concentração dos elementos essenciais, determinadas para as mesmas amostras citadas na Tabela 1.

Tabela 2 – Concentração de elementos essenciais (ng.g⁻¹) em arrozes comumente cultivados no Brasil N; número de amostras

			Cu	Zn	Se	
Municipio	Cultivar	N	média±desvio padrão			
			(mínimo-máximo)			
Arroio Grande	Α	15	2739±118	23700±6090	35,1±3,2	
			(2588-2895)	(15222-31265)	(30,8-40)	
Itaquí	Α	4	4931±321	33016±4899	28,8±2,6	
			(4561-5205)	(25668-35541)	(26,5-32,5)	
Pelotas	В	5	3612±101	19867±7788	35,9±4	
			(3514-3754)	(13722-31273)	(30,6-39,9)	
	Α	23	3804±967	22064±4646	45,9±9,5	
			(1644-4806)	(14574-32335)	(32-79)	
Santa Vitória	В	13	3224±492	22262±4568	43,7±7,4	
do Palmar			(2620-4061)	(15786-31180)	(32,9-56)	
Geral	-	60	3526±125	23101±4316	41±2,6	
			(1644-5205)	(13724-35541)	(26, 5-79)	

A concentração média de Se nas amostras de arroz de 42,2±10,6 ng.g⁻¹ é baixa quando comparada a concentração deste EE em castanhas do Pará, que conforme Silva (2013) apresentam concentração de Se de 54,8±4,6 mg.g⁻¹, no entanto novas pesquisas podem contribuir para o incremento da concentração de selênio em grãos de arroz. Um estudo anterior realizado por Batista e colaboradores (2010) determinou a concentração de Cu (4200±700 ng.g⁻¹) e Zn (44200±12900 ng.g⁻¹) em amostras de arroz integral parboilizado mais comumente comercializado no Brasil. Observaram-se nas amostras de arroz integral dos municípios de Pelotas, Santa Vitória do Palmar, Arroio Grande e Itaqui (que não passaram pela parboilização), valores médios das concentrações de Cu e Zn menores quando comparados às concentrações dos mesmos EE das amostras de arroz integral parboilizado.

CONCLUSÃO

Observou-se variação significativa nas concentrações de As, Cd, Pb, Zn, Cu e Se conforme a localização do cultivo de cada variedade de arroz. Os dados obtidos por este estudo exploratório, especialmente a observação da ocorrência de As, Cd e Pb em concentrações médias muito menores do que 200 ng.g-1 em grãos da variedade A cultivados no município de Pelotas, podem indicar uma variedade com baixa predileção por estes elementos. Ressalta-se que, partindo dos dados aqui expostos, sejam realizados estudos relacionando não somente a variação de concentração dos elementos de interesse com cultivares e localização geográfica, mas também com a composição do solo onde cada amostra foi cultivada bem como características físico-químicas. O arroz analisado é seguro, porém mediante a exigência crescente de alimentos com baixas concentrações de ENEs e ricos em EEs, novas pesquisas devem ser desenvolvidas, buscando agregar maior valor ao alimento.

AGRADECIMENTOS

Os autores manifestam agradecimento à Fundação de Amparo a Pesquisa do Estado

de São Paulo (FAPESP) e ao Conselho Nacional para a Pesquisa e Desenvolvimento (CNPq) pelo apoio financeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1- BATISTA, B. L. et al. Survey of 13 trace elements of toxic and nutritional significance in rice from Brazil and exposure assessment. **Food Additives and Contaminants: Part B**, New York, v. 3, n. 4, p. 253-262, dez. 2010.
- 2- SOUZA, J.M.O. et al. Arsênio e arroz: toxicidade, metabolismo e segurança alimentar. **Química Nova**, publicado na web em 08/10/2014.
- 3- NAVES, M.M.V. et al. Características químicas e nutricionais do arroz. **Boletim do Centro de Pesquisa de Processamento de Alimentos**, Curitiba , v. 25, n. 1, p. 51-60, jan./jun. 2007.
- 4- BARBOSA, F. et al. Elevated blood lead levels in a riverside population in the Brazil Amazon. **Environmental Research**. v.109, p.594–599, 2009.
- 5- GROTTO, D. et al. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. **Science of the Total Environment**, v.408, p.806–811, 2010.
- 6-FAO. **Codex alimentarius commission:** Draft and proposed draft revision of maximum levels in selected commodities in the general standard for contaminants and toxins in food and feed. Disponível em: < http://www.codexalimentarius.org/meetings-reports/en/>. Acesso em: 25 jun. 2015.
- 7-FAO. Codex alimentarius commission: Report of te 33rd session of the Codex committee on foodadditives and contaminants. Disponível em:
- <www.codexalimentarius.org/input/download/report/27/Al0112Ae.pdf>. Acesso em: 25 jun. 2015.
- 8-MINISTÉRIO DA AGRICULTURA. Arroz. Disponível em:
- http://www.agricultura.gov.br/vegetal/culturas/arroz. Acesso em: 20 jun. 2015.
- 9-SILVA, E.G. et al. Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS.**Talanta**.v.110, p.53-57, jun.2013.