Alterações no ciclo de desenvolvimento do arroz em Santa Maria, RS, durante as últimas dez décadas

Lilian Osmari Uhlmann¹, Nereu Augusto Streck², Luana Fernandes Gabriel³

Palavras chave: Oryza sativa, mudança climática, temperatura, fenologia.

INTRODUÇÃO

A fenologia é uma importante parte da ecologia de plantas e permite o estudo de mudanças no ciclo de desenvolvimento das plantas (Cleland et al., 2007). Culturas agrícolas anuais são altamente sensíveis à temperatura do ar, pois a duração de suas fases de desenvolvimento é dependente deste elemento meteorológico. Em um clima mais quente, o aumento da taxa diária de desenvolvimento da cultura, leva a uma redução da duração do período de crescimento da cultura, que em última análise tem o potencial de reduzir seu rendimento (Wheller et al., 1996;. Streck e Alberto, 2006; Walter et al., 2010).

Aproximadamente 60% da produção de arroz do Brasil é produzido em aproximadamente 1 milhão de hectares de terras baixas irrigadas por inundação no estado do Rio Grande do Sul. Ao longo dos últimos 40 anos, a época de colheita do arroz no RS tem sido deslocada do final do mês de abril e maio para fevereiro e março em parte devido à antecipação da época de semeadura de novembro-dezembro para outubro-novembro e devido às práticas de manejo à campo no período de pousio, possibilitando a semeadura direta e/ou semeadura no sistema pré-germinado. No entanto, frente a evidências de aumento de temperatura durante o século XX no RS (Sansigolo & Kayano, 2010), a hipótese neste estudo é que, além da mudança tecnológica, também alterações na temperatura do ar tem afetado a fenologia do arroz no RS, contribuindo para a antecipação da colheita.

O objetivo deste trabalho foi testar a tendência de longo prazo na duração das fases de desenvolvimento do arroz em Santa Maria, RS, Brasil.

MATERIAL E MÉTODOS

O estudo foi realizado para Santa Maria, RS, Brasil (29°43'S, 53°43'W, altitude=95 m). O ciclo de desenvolvimento do arroz foi dividido em quatro fases de desenvolvimento: emergência a três folhas completamente expandidas (EM-V3), emergência à diferenciação

¹ Estudante de graduação da Univeridade Federal de Santa Maria (UFSM). Av. Roraima, n°1000, 97105-900, Santa Maria, RS, Brasil. <u>liliuhlmann@yahoo.com.br</u>

² Eng^o Agrônomo, Prof. do Departamento de Fitotecnia, CCR, UFSM

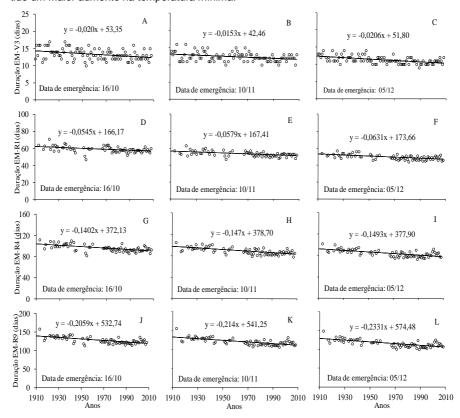
³ Engo Agrônomo, Aluna de doutorado do Programa de Pós-Graduação em Engenharia Agrícola, UFSM

da panícula (EM-R1), emergência à antese (EM-R4), e emergência à todos os grãos com casca marrom (EM-R9), de acordo com a escala fenológica de Counce (Counce et al., 2000). O estágio V3 foi escolhido pois neste período é recomendado realizar a entrada de água na lavoura e a primeira adubação nitrogenada de cobertura. No estágio R1, o número de espiguetas por panícula é definido e é realizado a segunda adubação de cobertura, e no estágio R4 o número de grãos por panícula é definido.

A fase EM-V3 foi simulada usando o modelo de aparecimento de folhas de Streck et al. (2008). As fases EM-R1, EM-R4 e EM-R9 foram simuladas com o modelo de Wang e Engel (Wang & Engel, 1998) adaptado para arroz por Streck et al. (2011).

Quatro cultivares de arroz foram avaliadas: IRGA 421, IRGA 417, EPAGRI 109 e EEA 406. As séries com os dados meteorológicos de TN e TX foram obtidos da Estação Meteorológica do Instituto Nacional de Meteorologia (INMET) de Santa Maria, RS, (1912/13 até a estação de crescimento 2010/11) foram usadas para rodar os modelos considerando três datas de emergência em cada estação de cresciemnto.

A tendência da série temporal foi testada com o teste não paramétrico de Mann-Kendall (MK) e a magnitude da tendência foi estimada por regressão linear simples, a 5% de probabilidade de erro.


RESULTADOS

Entre as estações de crescimento, a duração das fases de desenvolvimento diminuiu das datas de semeadura mais precoces para as mais tardias em todas as cultivares, o que é realístico já que as temperaturas TN e TX aumentaram nas semeaduras tardias. Entre as cultivares, a duração das fases de desenvolvimento diminuiu na sequência IRGA 421< IRGA 417< EEA 406< EPAGRI 109, o que é realístico e consistente com a duração do ciclo de desenvolvimento destas quatro cultivares de arroz (SOSBAI, 2012).

O teste de MK indicou uma tendência significativa negativa (decréscimo da série) para todas as séries de tempo (fases de desenvolvimento, datas de emergência e cultivares). Estes resultados indicam que a taxa de desenvolvimento em arroz aumentou nos últimos cem anos nesta região subtropical. A magnitude desta tendência de decréscimo é dada pelo coeficiente angular da regressão linear da duração da fase de desenvolvimento em relação aos anos, e foi significativa para todas as séries temporais (fase de desenvolvimento, data de emergência e cultivares). Para a cultivar IRGA 417 a magnitude da tendência de decréscimo está representada na Figura 1, o mesmo resultado ocorreu pra as demais cultivares.

Entre as fases de desenvolvimento, a redução foi menor (menos negativa) para as fases iniciais do desenvolvimento (EM-V3), e maior (mais negativo) para as fases de

desenvolvimento mais tardias, o que indica um aumento constante na taxa de desenvolvimento ao longo do ciclo de desenvolvimento do arroz. Entre as datas de emergência, a diminuição foi maior (mais negativo) nas primeiras e intermediárias para as datas de emergência mais tardias, indicando que o aumento na taxa de desenvolvimento foi mais pronunciado quando o ciclo de desenvolvimento começou e ocorreu durante o final da primavera e início do verão (novembro e dezembro). Entre cultivares o declive aumentou (mais negativo), geralmente na sequência IRGA 421 <IRGA 417 <IEEA 406 <IEPAGRI 109, ou seja, proporcional ao comprimento do ciclo de desenvolvimento (cultivares precoces para tardias). O aumento na inclinação da regressão linear nas datas de emergência mais cedo para as tardias em cada fase podem ser atribuídas ao fato de novembro e dezembro terem tido um maior aumento na temperatura mínima.

Figura 1. Duração da emergência à terceira folha expandida (EM-V3), emergência à diferenciação da panícula (EM-R1), emergência à antese (EM-R4) e emergência a todos os grãos com casca marrom (EM-R9) para a cultivar IRGA 417 em função dos anos agrícolas durante o período 1912-2011 (estações de crescimento 1912/13 a 2010/11) em Santa

Maria, RS, Brasil, em três datas de emergência (dia/mês): 16/10, (A, D, G, J), 10/11 (B, E, H, K), e 05/12 (C, F, I, L).

CONCLUSÕES

Mudanças no desenvolvimento do arroz durante as últimas dez décadas em Santa Maria, RS, Brasil, estão relacionadas com tendências de aquecimento durante o período vegetativo, levando à antecipação da época de colheita, dependendo do grupo de maturação da cultivar e da data de emergência. Temperaturas mais elevadas ao longo do período de tempo avaliado são responsáveis por alterações na fenologia do arroz neste local.

REFERÊNCIAS BIBLIOGRÁFICAS

CLELAND, E.E. et al. Shifting plant phenology in response to global change. **Trends in Ecology and Evolution**, London, v.22, n.7, p.357-365, 2007.

COUNCE, P.; KEOSÇONG, T. C.; MITCHELL, A. J. A uniform, objective, and adaptive system for expressing rice development. **Crop Science**, Madison, v.40, n.2, p.436-443, mar. 2000.

SANSIGOLO, C. A.; KAYANO, M. T. Trends in seasonal maximum and minimum temperature and precipitation in southern Brazil for the 1913-2006 period. **Theoretical and Applied Climatology**, v.101, n.1-2, p.209-216, jul. 2010.

SOCIEDADE SUL BRASILEIRA DE ARROZ IRRIGADO. Arroz irrigado: recomendações técnicas da pesquisa para o sul do Brasil. Itajaí, SC, 2012.

STRECK, N. A.; ALBERTO, C. M. Estudo numérico do impacto da mudança climática sobre o rendimento de trigo, soja e milho. **Pesquisa Agropecuária Brasileira**, Brasília, v.41, n.9, p.1351-1359, set. 2006.

STRECK, N. A.; BOSCO, L. C.; LAGO, I. Simulation leaf appearance in rice. **Agronomy Journal**, Madison, v.100, n.3, p.490-501, mai. 2008.

STRECK, N.A. et al. Modeling the development of cultivated rice and weedy red rice. **Transaction of the American Society of Agricultural and Biological Engineering**, v.54, n.1, p.371-384, 2011.

WANG, E., ENGEL, T. Simulation of phenological development of wheat crops. **Agricultural Systems**, v.58, n.1, p. 1-24, mar. 1998.

WHEELER, T.R. et al. Growth and yield of winter wheat (*Triticum aestivum*) crops in response to CO₂ and temperature. **Journal of Agricultural Science Cambridge**, v.127, n.1, p.37-48, 1996.