ABUNDÂNCIA DE COLIFORMES EM ÁGUAS DE IRRIGAÇÃO E DRENAGEM EM ECOSSISTEMA ORIZÍCOLA, CAMAQUÃ, RS.

Maria Helena Lima Ribeiro Reche¹, Catiusca Reali¹, Vera Regina Mussoi Macedo² & Lidia Mariana Fiuza^{1,2}

¹PPG em Biologia, Microbiologia, UNISINOS, São Leopoldo, RS. E-mail: hreche@cirrus.unisinos.br e fiuza@unisinos.br

²Estação Experimental do Arroz, IRGA, Cachoeirinha, RS.

Um elemento chave na avaliação, gerenciamento e risco de poluição fecal na água potável está na persistência de patógenos bacterianos indicadores de contaminação microbiológica. Numerosos estudos têm avaliado a persistência de bactérias do grupo coliforme em ecossistemas marinhos e dulcícolas, sedimentos aquáticos, solos, áreas de pecuária (TOPP, 2003) e neste caso, em área agrícola com solo de arroz inundado. A água é um insumo de grande importância na produção de arroz irrigado (MACEDO et al., 2006), onde se faz necessário o monitoramento dos possíveis impactos da orizicultura sobre ecossistemas aquáticos. O objetivo deste trabalho foi avaliar a qualidade microbiológica da água de irrigação e de drenagem da lavoura de arroz no Perímetro Irrigado pela Associação de Usuários da Barragem do Arroio Duro (AUD), em Camaquã, RS.

O reservatório da Barragem AUD no município de Camaquã, a 30º5104 S e 51º48 44 W, é a fonte principal de irrigação de 16.000 ha cultivados com arroz. Os pontos de irrigação foram no reservatório da Barragem (B), na estação de bombeamento do Rio Camaquã (R) e no Dreno 6 (D6). D6 é basicamente ponto de drenagem que num determinado local une-se a um canal de irrigação dentro do perímetro irrigado. Os pontos de drenagem da lavoura são: Dreno 1 (D1), Dreno 2 (D2), Dreno 3 (D3), Dreno 4 (D4) e Dreno 5 (D5). No período de outubro de 2006 a abril de 2007 foram efetuadas 23 coletas em 8 pontos de avaliação, totalizando 184 amostras analisadas.

As amostras de 100 mL de água foram submetidas à análise da qualidade microbiológica no laboratório de microbiológia da UNISINOS. Foi adotado o método de indicadores de poluição que estabelece simultaneamente a concentração de coliformes termotolerantes (*Escherichia coli*) e de coliformes totais através da análise bioquímica pelo método *Collilert®* (IDEXX), conforme CLESCERI et al. (1998).

Os dados obtidos foram convertidos em número mais provável em 100 mililitros (NMP/100mL) e submetidos à Análise de Variância Fatorial e as médias comparadas por Tukey a 5% de probabilidade (ZAR, 1999), utilizando o programa Systat 11, software (2004).

Os resultados encontram-se na tabela 1, a qual mostra os índices de coliformes totais e termotolerantes nos 8 pontos amostrados. Os coliformes totais foram os mais abundantes em todos os pontos, sendo as médias significativamente maiores quando comparadas aos coliformes termotolerantes (F_{7, 352} = 12.917; p < 0.05). O grupo coliforme total inclui espécies com *habitat* diversificado podendo ser encontrados no solo, na água e nas plantas (GONÇALVES, 2005).

Os pontos de irrigação B e R, juntamente com o dreno D2, apresentaram os menores índices de coliformes. Os pontos B e R apresentam maior vazão e consequentemente maior diluição da água quando comparados aos pontos de drenagem.

O ponto D6 utilizado também na irrigação das lavouras apresentou as médias de coliformes mais altas, diferindo significativamente dos demais pontos de amostragem e quando comparado aos termotolerantes (F_{7, 352} = 3.042; p <0.05). Embora elevados, esses resultados estão de acordo com os critérios sugeridos pela Organização Mundial da Saúde (OMS) para o bioindicador *E. coli*. Segundo os parâmetros da OMS a água que apresentar valores acima de 10³ Unidades Formadoras de Colônias (UFCs) em 100 mL de concentração de coliformes fecais, pode ser usada na irrigação de cereais (WHO, 1989).

Tabela 1. Índice de coliformes totais e termotolerantes (*Escherichia coli*) em águas, de irrigação e drenagem de lavoura de arroz, em Camaquã, RS (2006/07).

Locais	Coliformes Totais								Escherichia coli							
	R	В	D1	D2	D3	D4	D5	D6	R	В	D1	D2	D3	D4	D5	D6
02/10/2006	0*	0	0	0	0	0	0	35,9	0*	0	0	0	0	0	0	7.4
09/10/2006	0	0	0	0	1	1	0	62,4	0	0	0	0	0	0	0	13.5
16/10/2006	1	0	8,4	10,9	1	7,4	6,3	58,3	0	0	1	1	0	0	0	23.1
23/10/2006	1	0	0	0	1	0	0	5,2	0	0	0	0	0	0	0	2
30/10/2006	0	0	0	1	1	0	0	328,2	0	0	0	0	0	0	0	90.9
06/11/2006	6,3	0	2	7,4	2	2	9,7	26,9	0	0	0	0	0	0	0	4.1
13/11/2006	0	0	0	0	0	1	0	45	0	0	0	0	0	0	0	9.7
20/11/2006	0	0	0	0	0	0	0	104,6	0	0	0	0	0	0	0	12.2
27/11/2006	0	0	0	0	0	0	0	18,5	0	0	0	0	0	0	0	0
04/12/2006	0	0	1	0	0	2	95,9	93,4	0	0	0	0	0	0	16,8	25.3
11/12/2006	0	0	0	0	0	0	0	90,5	0	0	0	0	0	0	0	21.8
18/12/2006	1	0	10,6	0	0	3	4,1	142,1	0	0	1	0	0	0	0	36.4
02/01/2007	0	0	14,8	38,4	0	0	0	285,1	0	0	0	0	0	0	0	3.1
08/01/2007	2	0	16,1	0	0	6,3	0	85,7	0	0	0	0	0	0	0	23.5
15/01/2007	60,9	82,3	1	1	0	1	1	72,3	3	0	0	0	0	0	0	14.6
22/01/2007	0	0	0	0	0	0	0	870,4	0	0	0	0	0	0	0	112.4
29/01/2007	0	0	1011,1	0	478,6	260,2	298,7	689,3	0	0	0	0	0	0	0	5.2
05/02/2007	0	0	0	0	0	1	0	55,7	0	0	0	0	0	0	0	13.5
12/02/2007	0	0	0	2	0	0	0	20,3	0	0	0	0	0	0	0	8.6
26/02/2007	0	3,1	0	0	1	0	2	524,7	0	0	0	0	0	0	0	214.2
05/03/2007	0	0	0	0	1	1	0	52	0	0	0	0	0	0	0	20.3
02/04/2007	1	0	1	2	478,6	0	7,5	228,2	0	0	0	0	0	0	0	88.6
Média	3,18	3,88	46,34	2,72	42,1	12,51	18,48	170,89	0,13	0	0,08	0,04	0	0	0,73	33.09
Desvio padrão	12,65	17,14	210,36	8,22	137,73	54,02	64,23	229,34	0,62	0	0,28	0,2	0	0	3,5	49.77

^{*} NMP/100mL = Número mais provável em 100 mL.

REFERÊNCIAS BIBLIOGRÁFICAS

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Portaria 1469. Disponível em: http://www.anvisa.gov.br/legis/portarias/1469_00.htm. Acesso em: 15 abr. 2007.

CLESCERI, L. S.; GREENBERG, A. E. & EATON, A. D. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 20th Edition,1998. 9060 p. (A e B) 9223 (B).

CHO, Jang-Cheon & KIM, Sang-Jong. Increase in bacterial community diversity um subsurface aquifers receiving livestock wastewater input. **Applied and Environmental Microbiology.** Mar, 200, p. 956-965.

GONÇALVES, C. S.; RHEINHEIMER, D. S.; PELEGRINI, J. B. R. & KIST, S. L. Qualidade da água numa microbacia hidrográfica de cabeceira situada em região produtora de fumo. **Revista Brasileira de Engenharia Agrícola e Ambiental.** V.9, n.3. p.391-399, 2005.

GONZALEZ, A. M.; PARANHOS, R. & LUTTERBABACH, M. S. Heterotrophic bacteria abundances in Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil). **Brazilian Journal of Microbiology.** 37:428-433, 2006.

MACEDO, V. R. M; & CHAVES, A. P. L. Qualidade da água e racionalização do uso na lavoura de arroz irrigado no RS. IRGA – Estação Experimental do Arroz. Lavoura Arrozeira. v. 54 – n.439. Porto Alegre, RS. 2006. p.27-38. 62 p.

MANSOR, M. T. C.; FĬLHO, J. T. & ROSTON, D. M. Avaliação preliminar das cargas difusas de origem rural, em uma sub-bacia do Rio Jaguari, SP. **Revista Brasileira de Engenharia Agrícola e Ambiental.** v.10, nº3, p.715/723, 2006.

TOPP, E.; WELSH, M.; TIEN, Y.; DANG, A.; LAZAROVITS, G.; CONN, K. & ZHU, H. Strain-dependent variability in growth and survival of *Escherichia coli* in agricultural soil. **FEMS, Microbiology Ecology.** 44, 303-308, 2003.

WORLD HEALTH ORGANIZATION. Health Guidelines for Use of Wastewater in Agriculture and Aquaculture. Technical Report Series. 778. WHO, 1989, Geneva.

ZAR, J.H. 1999. **Biostatistical Analysis**. Ed. Prentice-Hall International, New Jersey, USA. 913p.